DSC 80 Discussion 2 Worksheet

1 WI24 Midterm Problem 3

Jasmine is a veterinarian. Below, you'll find information about some of the dogs in her care, separated by district and breed.

	Beagle	Cocker Spaniel		
	Mean Weight	Count	Mean Weight	Count
District 1	25	3	20	2
District 2	45	1	x	y

What is the mean weight of all beagles in the table above, across both districts?

Notice that the table above has two unknowns, x and y. Find positive integers x and y such that the mean weight of all beagles is equal to the mean weight of all cocker spaniels, where x is as small as possible.

2 FA23 Midterm Problem 1

	date	name	food	weight
$\mathbf{0}$	$2023-01-01$	Sam	Ribeye	0.20
$\mathbf{1}$	$2023-01-01$	Sam	Pinto beans	0.10
2	$2023-01-01$	Lauren	Mung beans	0.25
3	$2023-01-02$	Lauren	Lima beans	0.30
4	$2023-01-02$	Sam	Sirloin	0.30

Find the total kg of food eaten for each day and each person in df as a Series.
df.groupby (\qquad) [\qquad]. sum ()

Find all the unique people who did not eat any food containing the word "beans".

```
def foo(x):
    return
        ----------------------------------
```

df.groupby (
\qquad). \qquad (foo)['name'].unique()

3 FA23 Final Problem 1

The bus table (left) records bus arrivals over 11 day for all the bus stops within a 22 mile radius of UCSD.

	time	line	stop	late	time	Time of arrival (str). Note that the
0	12pm	201	Gilman Dr \& Mandeville Ln	-1.1		12 pm vs. $1: 15 \mathrm{pm}$).
1	1:15pm	30	Gilman Dr \& Mandeville Ln	2.8	line	Bus line (int). There are multiple buses per bus line each day.
2	11:02am	101	Gilman Dr \& Myers Dr	-0.8	stop late	Bus stop (str). The number of minutes the bus
3	8:04am	202	Gilman Dr \& Myers Dr	NaN		rived after its scheduled time. Nega-
4	9 am	30	Gilman Dr \& Myers Dr	-3.0		early (float). Some entries in this column are missing.

The stop table (left) contains information for all the bus lines in San Diego (not just the ones near UCSD).

	line	stop	next		Bus line (int).
0	201	Gilman Dr \& Mandeville Ln	VA Hospital	next	The next bus stop for a par-
1	201	VA Hospital	La Jolla Village Dr \& Lebon Dr		ticular bus line (str). For example, the first row of the
2	30	VA Hospital	Villa La Jolla Dr \& Holiday Ct		table shows that after the
3	30	UTC	NaN		201 stops at Gilman Dr \& Mandeville Ln, it will stop at the VA Hospital next. A missing value represents the end of a line.

Compute the number of buses in bus whose next stop is 'UTC'.
x = stop.merge(\qquad , on $=$ \qquad , how = \qquad)
x [_] . shape [0]

Compute the number of unique pairs of bus stops that are exactly two stops away from each other. For example, if you only use the first four rows of the stop table, then your code should evaluate to the number 2, since you can go from 'Gilman Dr \& Mandeville Ln' to 'La Jolla Village Dr \& Lebon Dr' and from 'Gilman Dr \& Mandeville Ln' to 'Villa La Jolla Dr \& Holiday Ct' in two stops. Hint: The suffixes $=(1,2)$ argument to merge appends a 1 to column labels in the left table and a 2 to column labels in the right table whenever the merged tables share column labels.

```
m =
```

\qquad

``` .merge(
``` \(\qquad\)
``` , left_on =
``` \(\qquad\)
``` , right_on =
``` \(\qquad\)
``` _,
```

\qquad

``` ].drop_duplicates ().shape [0])
```

```
            how =
```

 how =
 __-_-_-_-_--_,
 __-_-_-_-_--_,
 suffixes=(1, 2))
 suffixes=(1, 2))
 (m[

```
(m[
```


4 FA22 Midterm Problem 7

	category	completed	minutes	urgency	client	
$\mathbf{0}$	work	False	NaN	2.0	NaN	
$\mathbf{1}$	work	False	NaN	1.0	NaN	
$\mathbf{2}$	work	True	13.5	2.0	NaN	
$\mathbf{3}$	work	False	NaN	1.0	NaN	
$\mathbf{4}$	relationship	True	5.3	NaN	NaN	
\ldots						
$\mathbf{9 8 3 1}$	consulting	True	71.7	2.0	San Diego Financial Analysts	
$\mathbf{9 8 3 2}$	finance	True	36.4	1.0	NaN	
$\mathbf{9 8 3 3}$	work	True	31.1	1.0	NaN	
$\mathbf{9 8 3 4}$	work	True	24.8	3.0	NaN	
$\mathbf{9 8 3 5}$	work	False	NaN	2.0	NaN	

The code below creates a pivot table.

```
pt = tasks.pivot_table(index='urgency', columns='category', values='completed', aggfunc='sum')
```

Which of the below snippets of code will produce the same result as pt.loc [3.0, 'consulting']? Select all that apply.

Snippet 1:
tasks[(tasks['category'] == 'consulting') \& (tasks['urgency'] == 3.0)]['completed'].sum()
Snippet 2:

```
tasks[tasks['urgency'] == 3].groupby('category')['completed'].sum().loc['consulting']
```

Snippet 3:
tasks.groupby('urgency') ['completed'].sum().loc[3.0, 'consulting']
Snippet 4:
tasks.groupby(['urgency', 'category'])['completed'].sum().loc[(3.0, 'consulting')]
\square Snippet 5
tasks.groupby('completed').sum().loc[(3.0, 'consulting')]

