Discussion 3

DSC 80

2024-04-19

(1) WI23 Midterm Problem 6
(2) WI23 Final Problem 2.5
(3) FA23 Midterm Problem 4

4 Attendance

Section 1

WI23 Midterm Problem 6

tv_excl

	Title	Year	Age	IMDb	Rotten Tomatoes	Service
$\mathbf{0}$	Jersey Shore	2009	$16+$	3.6	54	Hulu
$\mathbf{1}$	Henry Hugglemonster	2013	all	5.3	42	Disney+
$\mathbf{2}$	Fast \& Furious Spy Racers	2019	$7+$	5.5	62	Netflix
$\mathbf{3}$	Atlanta	2016	$18+$	8.6	84	Hulu
$\mathbf{4}$	Played	2013	NaN	6.4	45	Prime Video

counts

Service Disney+ Hulu Netflix Prime Video

Age

13+
NaN
4.0
2.0
13.0405 .0
320.0
147.0

18+
NaN 223.0
445.0
134.0

7+
$91.0 \quad 246.0$
245.0
149.0
all
116.0
97.0
151.0
144.0

Problem 1

Given the above information, what does the following expression evaluate to: tv excl.groupby(["Age", "Service"]).sum().shape[0]

- Which DataFrame can we use to give us the answer?

Problem 1

Given the above information, what does the following expression evaluate to: tv excl.groupby(["Age", "Service"]).sum().shape[0]

- Which DataFrame can we use to give us the answer?
- What, conceptually, does the given expression evaluate to?

Problem 1

Given the above information, what does the following expression evaluate to: tv excl.groupby(["Age", "Service"]).sum().shape[0]

- Which DataFrame can we use to give us the answer?
- What, conceptually, does the given expression evaluate to?
- Hint: What does each value in counts refer to?

Solution

The solution is to just count all of the non-null values in counts, since each one represents a combination of Age and Service from tv_excl. - That's why we noted that counts includes every valid combination.

Problem 2

Tiffany would like to compare the distribution of Age for Hulu and Netflix. Specifically, she'd like to test the following hypotheses:

- Null Hypothesis: The distributions of Age for Hulu and Netflix are drawn from the same population distribution, and any observed differences are due to random chance.
- Alternative Hypothesis: The distributions of Age for Hulu and Netflix are drawn from different population distributions.

Is this a hypothesis test, or a permutation test?

Hypothesis Testing

So what is a hypothesis test, anyway?
Let's say we have a result, and we'd like to know whether or not that result means anything.

In order to make sure, we simulate a similar picture of the dataset assuming that nothing is happening, and see how often an effect that large occurs. This is why we reject/fail to reject w.r.t. the null hypothesis, not the alternate.

Note: In practice, scientific papers rarely simulate to generate p-values

Operationalizing

So now, how do the pieces we're talking about today fit into that:

- Test statistic: the value we'll use to compare results
- e.g. TVD, difference in means, the mean itself
- Should capture the differences you care about!
- p-value: how unlikely the observed test statistic needs to be under H_{0} to reject H_{0} - you set this beforehand

Permutation Testing

A permutation test is a special case of hypothesis testing, where what we want to test is whether two samples were drawn from the same distribution. Specifically, we're shuffling the group assignment as a method of generating samples under the null hypothesis!

Total Variation Distance

```
hn = counts[["Hulu", "Netflix"]]
# Note that distr has 2 rows and 5 columns.
distr = (hn / hn.sum()).T
```

To test the hypotheses above, Tiffany decides to use the total variation distance as her test statistic. Which of the following expressions DO NOT correctly compute the observed statistic for her test?

TVD (cont.)

- First - what is the DataFrame distr going to look like?

TVD (cont.)

- First - what is the DataFrame distr going to look like?
- Ignoring all of the potential given solutions, how might you calculate the TVD from there?

TVD (cont.)

- First - what is the DataFrame distr going to look like?
- Ignoring all of the potential given solutions, how might you calculate the TVD from there?
- Now we're going to go over each of the solutions in turn.

Things to Remember

- This is a real "you should be able to manipulate DataFrames in your head" type question!
- One big key to this question is knowing how the axis keyword works!
- In most cases, the way I think about it is: axis $=0$ sums vertically, while axis $=1$ sums horizontally
- Also, methods like . $\operatorname{diff}()$ and. $\operatorname{sum}()$ default to axis $=0$, so even when the axis keyword isn't visibly present, you should still be aware of what's going on.

Section 2

WI23 Final Problem 2.5

WI23 Final Problem 2.5

$\operatorname{TVD}(\vec{a}, \vec{b})=\frac{1}{2} \sum_{i=1}^{n}\left|a_{i}-b_{i}\right|$
$\operatorname{dis} 1(\vec{a}, \vec{b})=\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}$
$\operatorname{dis} 2(\vec{a}, \vec{b})=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}}{\sqrt{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}}}$
$\operatorname{dis} 3(\vec{a}, \vec{b})=1-\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
Yikes! Math! But if you're familiar with the dot product, you should be alright.

Dot Products

- The dot product is a very common vector similarity metric.
- What's $(3,3) \cdot(2,2)$?
- What's $(3,3) \cdot(-2,-2)$?
- But the dot product increases when vectors are scaled - we might not want that!

Dot Products

- The dot product is a very common vector similarity metric.
- What's $(3,3) \cdot(2,2)$?
- What's $(3,3) \cdot(-2,-2)$?
- But the dot product increases when vectors are scaled - we might not want that!
- We can normalize the dot product by dividing by the length of each vector

Dot Products

- The dot product is a very common vector similarity metric.
- What's $(3,3) \cdot(2,2)$?
- What's $(3,3) \cdot(-2,-2)$?
- But the dot product increases when vectors are scaled - we might not want that!
- We can normalize the dot product by dividing by the length of each vector
- By length, I mean the Euclidean norm - if you feel like looking up some math, look up the definition of a p-norm, it's somewhat interesting.

Dot Products

- The dot product is a very common vector similarity metric.
- What's $(3,3) \cdot(2,2)$?
- What's $(3,3) \cdot(-2,-2)$?
- But the dot product increases when vectors are scaled - we might not want that!
- We can normalize the dot product by dividing by the length of each vector
- By length, I mean the Euclidean norm - if you feel like looking up some math, look up the definition of a p-norm, it's somewhat interesting.
- So, our solution is dis3 - it's the only one that's both normalized to $(0,1)$, and where, like TVD, smaller values are more similar.

Section 3

FA23 Midterm Problem 4

Donkey Data

We're working with the DataFrame donkeys, described below.

	id	BCS	Age	Weight	WeightAlt
$\mathbf{0}$	d 01	3.0	<2	77	NaN
$\mathbf{1}$	d 02	2.5	<2	100	NaN
$\mathbf{2}$	d 03	1.5	<2	74	NaN

id A unique identifier for each donkey (d01, d02, etc.).
BCS Body condition score: from 1 (emaciated) to 3 (healthy) to 5 (obese) in increments of 0.5 .
Age Age in years: <2, 2-5, 5-10, 10-15, 15-20, and over 20 years.
Weight Weight in kilograms.
WeightAlt Second weight measurement taken for 30 donkeys. NaN if the donkey was not reweighed.

Problem

Alan wants to see whether donkeys with BCS ≥ 3 have larger Weight values on average compared to donkeys that have BCS <3. Select all the possible test statistics that Alan could use to conduct this hypothesis test. Let μ_{1} be the mean weight of donkeys with $\mathrm{BCS} \geq 3$ and μ_{2} be the mean weight of donkeys with BCS <3.

Solution

- We want a test statistic that compares the Weight of donkeys with BCS both $<$ and \geq than 3 .

Solution

- We want a test statistic that compares the Weight of donkeys with BCS both $<$ and \geq than 3 .
- Specifically, we want to know whether donkeys with BCS ≥ 3 have larger Weight values on average

Solution

- We want a test statistic that compares the Weight of donkeys with BCS both $<$ and \geq than 3 .
- Specifically, we want to know whether donkeys with BCS ≥ 3 have larger Weight values on average
- There are two options that work here: $\mu_{1}-\mu_{2}$, and $2 \mu_{2}-\mu_{1}$

Solution

- We want a test statistic that compares the Weight of donkeys with BCS both $<$ and \geq than 3 .
- Specifically, we want to know whether donkeys with BCS ≥ 3 have larger Weight values on average
- There are two options that work here: $\mu_{1}-\mu_{2}$, and $2 \mu_{2}-\mu_{1}$
- $2 \mu_{2}-\mu_{1}=\mu_{2}+\left(\mu_{2}-\mu_{1}\right)$, so it's pretty much the same thing, just shifted upwards

Section 4

Attendance

Attendance

Once I give you a number, fill out the following Google form: https://forms.gle/wP6ybKhG6H5E2wYH6

