Discussion 3

DSC 80

2024-04-19

- **2** WI23 Final Problem 2.5
- 3 FA23 Midterm Problem 4

2/23

Section 1

WI23 Midterm Problem 6

	Title	Year	Age	IMDb	Rotten Tomatoes	Service
0	Jersey Shore	2009	16+	3.6	54	Hulu
1	Henry Hugglemonster	2013	all	5.3	42	Disney+
2	Fast & Furious Spy Racers	2019	7+	5.5	62	Netflix
3	Atlanta	2016	18+	8.6	84	Hulu
4	Played	2013	NaN	6.4	45	Prime Video

counts

Service	Disney+	Hulu	Netflix	Prime Video
Age				
13+	NaN	4.0	2.0	1.0
16+	13.0	405.0	320.0	147.0
18+	NaN	223.0	445.0	134.0
7+	91.0	246.0	245.0	149.0
all	116.0	97.0	151.0	144.0
DSC 80		Discussion	3	2024-04-19 5 / 23

Given the above information, what does the following expression evaluate to: tv excl.groupby(["Age", "Service"]).sum().shape[0]

• Which DataFrame can we use to give us the answer?

Given the above information, what does the following expression evaluate to: tv excl.groupby(["Age", "Service"]).sum().shape[0]

- Which DataFrame can we use to give us the answer?
- What, conceptually, does the given expression evaluate to?

6 / 23

Given the above information, what does the following expression evaluate to: tv excl.groupby(["Age", "Service"]).sum().shape[0]

- Which DataFrame can we use to give us the answer?
- What, conceptually, does the given expression evaluate to?
- Hint: What does each value in counts refer to?

The solution is to just count all of the non-null values in counts, since each one represents a combination of Age and Service from tv_excl. - That's why we noted that counts includes *every* valid combination.

Tiffany would like to compare the distribution of Age for Hulu and Netflix. Specifically, she'd like to test the following hypotheses:

- **Null Hypothesis:** The distributions of Age for Hulu and Netflix are drawn from the same population distribution, and any observed differences are due to random chance.
- Alternative Hypothesis: The distributions of Age for Hulu and Netflix are drawn from different population distributions.

Is this a hypothesis test, or a permutation test?

Hypothesis Testing

So what is a hypothesis test, anyway?

Let's say we have a result, and we'd like to know whether or not that result means anything.

In order to make sure, we simulate a similar picture of the dataset *assuming that nothing is happening*, and see how often an effect that large occurs. This is why we reject/fail to reject w.r.t. the null hypothesis, not the alternate.

Note: In practice, scientific papers rarely simulate to generate p-values

Operationalizing

So now, how do the pieces we're talking about today fit into that:

- Test statistic: the value we'll use to compare results
 - e.g. TVD, difference in means, the mean itself
 - Should capture the differences you care about!
- p-value: how unlikely the observed test statistic needs to be under H₀ to reject H₀ - you set this beforehand

Permutation Testing

A permutation test is a special case of hypothesis testing, where what we want to test is whether two samples were drawn from the same distribution.

Specifically, we're shuffling the group assignment as a method of generating samples under the null hypothesis!

Total Variation Distance

```
hn = counts[["Hulu", "Netflix"]]
# Note that distr has 2 rows and 5 columns.
distr = (hn / hn.sum()).T
```

To test the hypotheses above, Tiffany decides to use the total variation distance as her test statistic. Which of the following expressions **DO NOT** correctly compute the observed statistic for her test?

TVD (cont.)

• First - what is the DataFrame distr going to look like?

TVD (cont.)

- First what is the DataFrame distr going to look like?
- Ignoring all of the potential given solutions, how might you calculate the TVD from there?

TVD (cont.)

- First what is the DataFrame distr going to look like?
- Ignoring all of the potential given solutions, how might you calculate the TVD from there?
- Now we're going to go over each of the solutions in turn.

Things to Remember

- This is a real "you should be able to manipulate DataFrames in your head" type question!
- One big key to this question is knowing how the axis keyword works!
 - In most cases, the way I think about it is: axis = 0 sums vertically, while axis = 1 sums horizontally
 - Also, methods like .diff() and .sum() default to axis = 0, so even when the axis keyword isn't visibly present, you should still be aware of what's going on.

Section 2

WI23 Final Problem 2.5

WI23 Final Problem 2.5

$$\begin{aligned} \mathsf{TVD}(\vec{a}, \vec{b}) &= \frac{1}{2} \sum_{i=1}^{n} |a_i - b_i| \\ \mathrm{dis1}(\vec{a}, \vec{b}) &= \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n \\ \mathrm{dis2}(\vec{a}, \vec{b}) &= \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{a_1 b_1 + a_2 b_2 + \dots + a_n b_n}{\sqrt{a_1^2 + a_2^2 + \dots + a_n^2} \sqrt{b_1^2 + b_2^2 + \dots + b_n^2}} \\ \mathrm{dis3}(\vec{a}, \vec{b}) &= 1 - \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \end{aligned}$$

Yikes! Math! But if you're familiar with the dot product, you should be alright.

- The dot product is a very common vector similarity metric.
 - What's (3,3) ⋅ (2,2)?
 - What's $(3,3) \cdot (-2,-2)$?
- But the dot product increases when vectors are scaled we might not want that!

- The dot product is a very common vector similarity metric.
 - What's (3,3) ⋅ (2,2)?
 - What's $(3,3) \cdot (-2,-2)$?
- But the dot product increases when vectors are scaled we might not want that!
- We can normalize the dot product by dividing by the length of each vector

- The dot product is a very common vector similarity metric.
 - What's (3,3) ⋅ (2,2)?
 - What's $(3,3) \cdot (-2,-2)$?
- But the dot product increases when vectors are scaled we might not want that!
- We can normalize the dot product by dividing by the length of each vector
- By length, I mean the Euclidean norm if you feel like looking up some math, look up the definition of a *p*-norm, it's somewhat interesting.

- The dot product is a very common vector similarity metric.
 - What's (3,3) ⋅ (2,2)?
 - What's $(3,3) \cdot (-2,-2)$?
- But the dot product increases when vectors are scaled we might not want that!
- We can normalize the dot product by dividing by the length of each vector
- By length, I mean the Euclidean norm if you feel like looking up some math, look up the definition of a *p*-norm, it's somewhat interesting.
- So, our solution is dis3 it's the only one that's both normalized to (0,1), and where, like TVD, smaller values are more similar.

Section 3

FA23 Midterm Problem 4

Donkey Data

We're working with the DataFrame donkeys, described below.

	id	BCS	Age	Weight	WeightAlt
0	d01	3.0	<2	77	NaN
1	d02	2.5	<2	100	NaN
2	d03	1.5	<2	74	NaN

id	A unique identifier for each donkey (d01, d02,
	etc.).
BCS	Body condition score: from 1 (emaciated) to 3
	(healthy) to 5 (obese) in increments of 0.5.
Age	Age in years: $<2, 2-5, 5-10, 10-15, 15-20$, and
	over 20 years.
Weight	Weight in kilograms.
WeightAlt	Second weight measurement taken for 30 don-
	keys. NaN if the donkey was not reweighed.

Alan wants to see whether donkeys with BCS \geq 3 have larger Weight values on average compared to donkeys that have BCS < 3. Select all the possible test statistics that Alan could use to conduct this hypothesis test. Let μ_1 be the mean weight of donkeys with BCS \geq 3 and μ_2 be the mean weight of donkeys with BCS < 3.

• We want a test statistic that compares the Weight of donkeys with BCS both < and \geq than 3.

- We want a test statistic that compares the Weight of donkeys with BCS both < and \geq than 3.
- Specifically, we want to know whether donkeys with BCS \geq 3 have larger Weight values on average

- We want a test statistic that compares the Weight of donkeys with BCS both < and \geq than 3.
- Specifically, we want to know whether donkeys with BCS \geq 3 have larger Weight values on average
- There are two options that work here: $\mu_1 \mu_2$, and $2\mu_2 \mu_1$

- We want a test statistic that compares the Weight of donkeys with BCS both < and \geq than 3.
- Specifically, we want to know whether donkeys with BCS \geq 3 have larger Weight values on average
- There are two options that work here: $\mu_1 \mu_2$, and $2\mu_2 \mu_1$
- $2\mu_2 \mu_1 = \mu_2 + (\mu_2 \mu_1)$, so it's pretty much the same thing, just shifted upwards

Section 4

Attendance

Attendance

Once I give you a number, fill out the following Google form: https://forms.gle/wP6ybKhG6H5E2wYH6

