
Discussion 6 Solutions 1

Discussion 6 Solutions
FA23 Final Problem 7
Alan set up a web page for his DSC 80 notes with the following HTML

<html>

 <body>

 <div id = "hero">DSC 80 NOTES</div>

 <div class="notes">

 <div class="notes">

 <p>Lecture 1: 5/5 stars!</p>

 </div>

 <div class="lecture notes">

 <p>Lecture 2: 6/5 stars!!</p>

 </div>

 </div>

 <div class="lecture">

 <p>Lecture 3: 10/5 stars!!!!</p>

 </div>

 </body>

</html>

Assume that the web page is parsed into a BeautifulSoup object named soup . Fill in each
of the expressions below to evaluate to the desired string. Pay careful attention to the
indexes after each call to find_all !

Part 1
Desired string: "Lecture 1: 5/5 stars!"

soup.find_all(____)[0].text

Answer: soup.find_all('p')[0].text

"Lecture 1: 5/5 stars!" is surrounded by <p> tags, and find_all will get every instance of
these tags as a list. Since "Lecture 1: 5/5 stars!" is the first instance, we can get it from its
index in the list, [0] . Then we grab just the text using .text .

Part 2
Desired string: "Lecture 2: 6/5 stars!!"

Discussion 6 Solutions 2

soup.find_all(____)[3].text

Answer:

soup.find_all('div')[3].text

"Lecture 2: 6/5 stars!!" appears as the text surrounded by the fourth <div> tag, and since
we are grabbing index [3] we need to find_all('div') . Then .text grabs the text portion.

Part 3
Desired string: "Lecture 3: 10/5 stars!!!!"
soup.find_all(____)[1].text

Answer:

Answer:

soup.find_all('div', class_='lecture')[1].text

We need to return a list with "Lecture 3: 10/5 stars!!!!" as the second index since we
access it with [1] . We see that we have two instances of 'lecture' attributes in div tags:
one with class="lecture notes" and class="lecture" .

Note that class="lecture notes" actually means that the tag has two class attributes, one of
"lecture" and one of "notes" . The class_='lecture' optional argument in find_all will find all
tags that have a 'lecture' attribute, meaning that itʼll find both the class="lecture notes" tag
and the class="lecture" tag. So, soup.find_all('div', class_='lecture') will find the two
aforementioned <div> s, [1] will find the second one (which is the one we want), and
.text will find "Lecture 3: 10/5 stars!!!!" .

SP23 Final Problem 1
Consider the following Code Snippet:
re.findall(r'__(a)__', 'my cat is hungry, concatenate!, catastrophe! What a cat!')

Part 1
Which regular expression in __(a)__ will generate the following output? Output: ['my', 'a']

\b([a-z]*)cat\b

\b[a-z]*\scat\b

([a-z]*)\scat\b

\b([a-z]*\scat)\b

Discussion 6 Solutions 3

Answer: C ([a-z]*)\scat\b

This regular expression selects the sections of matches that consist of zero or more
lowercase letters that are followed by a space and then followed by cat as a whole word
(not with cat as a substring of a larger word), essentially selecting words followed by a
space and the word cat. Thus this option correctly selects ['my', 'a'] .

Option 1 would select ['', '']

Option 2 would select ['my cat', 'a cat']

Option 4 would select ['my cat', 'a cat']

Part 2
Which regular expression in __(a)__ will generate the following output?
Output: ['concatenate']

\b.*cat.*\b

[a-z]*cat[a-z]*

[a-z]+cat[a-z]+

\b[a-z]*cat[a-z]*\b

Answer: C [a-z]+cat[a-z]+

This regular expression selects matches where one or more lowercase
letters are followed by the substring cat, and then followed by one or
more lowercase letters, essentially selecting words with cat as a
substring but not a prefix. Thus this option correctly selects

['concatenate'] .

Option 1 would select

['my cat is hungry, concatenate!, catastrophe! What a cat']

Option 2 would select

['cat', 'concatenate', 'catastrophe', 'cat']

Option 4 would select

['cat', 'concatenate', 'catastrophe', 'cat']

Part 3
Which regular expression in __(a)__ will generate the following output?

Discussion 6 Solutions 4

Output: ['cat', 'concatenate', 'catastrophe', 'cat']

.*cat.*

\b.*cat.*\b

\b[a-z]*cat[a-z]*\b

\b[a-z]+cat[a-z]+\b

Answer: C \b[a-z]*cat[a-z]*\b

This regular expression selects matches where a word boundary is followed by 0 or more
lowercase letters, cat, and then follwoed by 0 or more lowercase letters followed by a
word boundary, essentially selecting words containing cat. Thus this option correctly
selects

['cat', 'concatenate', 'catastrophe', 'cat'] .

Option 1 would select

['my cat is hungry, concatenate!, catastrophe! What a cat!']

Option 2 would select

['my cat is hungry, concatenate!, catastrophe! What a cat!']

Option 4 would select ['concatenate']

WI23 Final Exam Problem 4
To prepare for the verbal component of the SAT, Nicole decides to read research papers
on data science. While reading these papers, she notices that there are many citations
interspersed that refer to other research papers, and sheʼd like to read the cited papers as
well.

In the papers that Nicole is reading, citations are formatted in the verbose numeric style.
An excerpt from one such paper is stored in the string s below.

s = '''

In DSC 10 [3], you learned about babypandas, a strict subset

of pandas [15][4]. It was designed [5] to provide programming

beginners [3][91] just enough syntax to be able to perform

meaningful tabular data analysis [8] without getting lost in

100s of details.

'''

Discussion 6 Solutions 5

We decide to help Nicole extract citation numbers from papers. Consider the following
four extracted lists.

list1 = ['10', '100']

list2 = ['3', '15', '4', '5', '3', '91', '8']

list3 = ['10', '3', '15', '4', '5', '3', '91', '8', '100']

list4 = ['[3]', '[15]', '[4]', '[5]', '[3]', '[91]', '[8]']

list5 = ['1', '0', '3', '1', '5', '4', '5', '3',

 '9', '1', '8', '1', '0', '0']

For each expression below, select the list it evaluates to, or select “None of the above.ˮ

Part 1
re.findall(r'\d+', s)

Answer: list3

This regex pattern \d+ matches one or more digits anywhere in the string. It doesnʼt
concern itself with the context of the digits, whether they are inside brackets or not. As a
result, it extracts all sequences of digits in s, including '10' , '3' , '15' , '4' , '5' , '3' ,
'91' , '8' , and '100' , which together form list3 . This is because \d+ greedily matches all
contiguous digits, capturing both the citation numbers and any other numbers present in
the
text.

Part 2
re.findall(r'[\d+]', s)

Answer: list5

This pattern [\d+] is slightly misleading because the square brackets are used to define a
character class, and the plus sign inside is treated as a literal character, not as a quantifier.
However, since there are no plus signs in s , this detail does not affect the outcome. The
character class \d matches any digit, so this pattern effectively matches individual digits
throughout the string, resulting in list5 . This list contains every single digit found in s ,
separated as individual string elements.

Part 3
re.findall(r'\[(\d+)\]', s)

Answer: list2

This pattern is specifically designed to match digits that are enclosed in square brackets.
The \[(\d+)\] pattern looks for a sequence of one or more digits \d+ inside square

Discussion 6 Solutions 6

brackets [] . The parentheses capture the digits as a group, excluding the brackets from
the result. Therefore, it extracts just the citation numbers as they appear in s , matching
list2 exactly. This method is precise for extracting citation numbers from a text formatted
in the verbose numeric style.

WI23 Final Exam Problem 5
After taking the SAT, Nicole wants to check the College Boardʼs website to see her score.
However, the College Board recently updated their website to use non-standard HTML
tags and Nicoleʼs browser canʼt render it correctly. As such, she resorts to making a GET
request to the site with her scores on it to get back the source HTML and tries to parse it
with BeautifulSoup.

Suppose soup is a BeautifulSoup object instantiated using the following HTML document.

<college>Your score is ready!</college>

<sat verbal="ready" math="ready">

 Your percentiles are as follows:

 <scorelist listtype="percentiles">

 <scorerow kind="verbal" subkind="per">

 Verbal: <scorenum>84</scorenum>

 </scorerow>

 <scorerow kind="math" subkind="per">

 Math: <scorenum>99</scorenum>

 </scorerow>

 </scorelist>

 And your actual scores are as follows:

 <scorelist listtype="scores">

 <scorerow kind="verbal"> Verbal: <scorenum>680</scorenum> </scorer

 <scorerow kind="math"> Math: <scorenum>800</scorenum> </scorerow>

 </scorelist>

</sat>

 soup.find("scorerow").get("kind")

 soup.find("sat").get("ready")

 soup.find("scorerow").text.split(":")[0].lower()

 [s.get("kind") for s in soup.find_all("scorerow")][-2]

 soup.find("scorelist", attrs={"listtype":"scores"}).get("kind")

Discussion 6 Solutions 7

 None of the above

Solution
Answer: Option 1, Option 3, Option 4

Correct options:

Option 1 finds the first <scorerow> element and retrieves its "kind" attribute, which is
"verbal" for the first <scorerow> encountered in the HTML document.

Option 2 finds the first <scorerow> tag, retrieves its text ("Verbal: 84") , splits this text by
“: ,ˮ and takes the first element of the resulting list ("Verbal") , converting it to lowercase
to match "verbal" .

Option 3 creates a list of "kind" attributes for all <scorerow> elements. The second to
last 2 element in this list corresponds to the "kind" attribute of the first <scorerow> in
the second <scorelist> tag, which is also "verbal" .

Incorrect options:

Option 2 attempts to get an attribute ready from the <sat> tag, which does not exist as
an attribute.

Option 5 tries to retrieve a "kind" attribute from a <scorelist> tag, but <scorelist>
does not have a
"kind" attribute.

