Final Exam Solutions - DSC 80, Spring 2024

Instructions:

- This exam consists of 14 questions. A total of 100 points are available.
- Questions marked with (M) will be used for your midterm exam redemption.
- Write name in the top right of each page in the space provided.
- Please write neatly in the provided answer boxes. We will not grade work that appears elsewhere.
- Completely fill in bubbles and square boxes.A bubble means that you should only select one choice.A square box means you should select all that apply.
- You may refer to two $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheets of notes of your own creation. No other resources or technology (including calculators) are permitted.
- Do not turn the page until instructed to do so.

Last name	
First name	
Student ID number	
UCSD email	
Name of the person to your left	
Name of the person to your right	
All the work on this exam is my own. (please sign)	

Name:

This page is intentionally left blank. Feel free to use it as scratch paper.
\qquad

Question 1... 6 points (M) Fill in Python code below so that the last line of each code snippet evaluates to each desired result, using the df and survey DataFrames described on Page 1 of the Reference Sheet. You may not use for or while loops in any answer for this question. For convenience, the first few rows of df (top) and survey (bottom) are displayed below; see your Reference Sheet for the full details.

0	2023-01-03	20.99	1.0 VA	JIAFUEO Ziplock Bag Organizer, Bamboo Ziplock ...		FOOD_STORAGE_BAG		P2955
1	2023-01-03	23.84	1.0 VA	Briarwood Lane St Pat's Pickup St Patricks Day...			RUG	P2955
2	2023-01-25	12.63	1.0 VA	Pentatonix Deluxe Version		marijuana	ABIS_MUSIC	P2955
		id	age	income	state m		diabetes	
	0	P0001	35-44 years	\$25,000-\$49,999	lowa	No	No	
	1	P0002	45-54 years	\$100,000-\$149,999	Ohio	No	No	
	2	P0003	25-34 years	\$25,000-\$49,999	Arkansas	No	Yes	

(a) (2 points) Find the participant ID of the person who made the most recent purchase in the dataset.

```
df.sort_values(__date'__, ascending=True).iloc[__-1 , _ -1 _ ]
```

(b) (4 points) Create a DataFrame that compares the range of item costs for people with diabetes and people that don't have diabetes. The DataFrame should by indexed by the unique values in the diabetes column (Yes and No) and have one column: the range of item costs (max cost - min cost) for each group.

```
def f(x):
```

 return \(\quad x \cdot \max ()-x \cdot \min ()\)
 (df.merge(survey, on='id')
.groupby (_ 'diabetes' ['cost'] $]$]]
agg

Question 2
(a) (1 point) (M) What is the most likely missingness mechanism for the state column in df?

Missing by design
O Missing completely at randomMissing at randomNot missing at random
(b) (1 point) (M) What is the most likely missingness mechanism for the income column in survey?

O Missing by design
\bigcirc Missing completely at random
O Missing at random
\bigcirc Not missing at random
\qquad

Question 3
(M) The code snippet below uses a for loop.

```
mystery = 0
for i in df['id'].unique():
    temp = df[df['id'] == i]
    if temp['q'].sum() > 100:
                mystery += 1
```

(a) (5 points) Rewrite the snippet without using any loops.

\qquad
\qquad
(b) (2 points) Suppose you see the output below:
>>> df['id']. value_counts()
P2955 200
P3001 150
P3125 100
Name: id, Length: 3, dtype: int64

Fill in the blank in the sentence below with a single number.

The code without for loops runs approximately \qquad times faster than the code with a for loop.

Question 4

\qquad
You want to use regular expressions to extract out the number of ounces from the 5 product names below.

Index	Product Name	Expected Output
0	Adult Dog Food 18-Count, 3.5 oz Pouches	3.5
1	Gardetto's Snack Mix, 1.75 Ounce	1.75
2	Colgate Whitening Toothpaste, 3 oz Tube	3
3	Adult Dog Food, 13.2 oz. Cans 24 Pack	13.2
4	Keratin Hair Spray 2!6 oz	6

The names are stored in a pandas Series called names. For each snippet below, select the indexes for all the product names that will not be matched correctly.
(a) (5 points) Snippet:
regex = r'([\d.]+) oz'
names.str.findall(regex)$0 \quad 1$234All names will be matched correctly.
(b) (5 points) Snippet:
regex $=r^{\prime}(\backslash d+? . \backslash d+)$ oz|Ounce'
names.str.findall(regex)3
4All names will be matched correctly.

Name: \qquad

Question 5
(M) Suppose you define a DataFrame t as follows:

```
t = (survey.merge(df, on='id', suffixes=('', '2'))
    .assign(is_ca=t['state'] == 'California',
    is_boot=t['cat'] == 'BOOT',
    is_tool=t['cat'] == 'TOOLS'))
```

The first few rows of t are shown below:

	id	age	income	state	\ldots	cat	is_ca	is_boot	is_tool
$\mathbf{0}$	P1852	$18-24$ years	$\$ 75,000-\$ 99,999$	Maryland	\ldots	COMPUTER	False	False	False
1	P2244	$25-34$ years	Less than $\$ 25,000$	North Carolina	\ldots	WATER	False	False	False
$\mathbf{2}$	P2244	$25-34$ years	Less than $\$ 25,000$	North Carolina	\ldots	FRUIT_SNACK	False	False	False

For each pivot table below, state whether it is possible to observe Simpson's paradox without any extra information about the data.
(a) (2 points) Pivot table:
t.pivot_table(
index='is_ca',
columns='is_boot',
values='cost',
aggfunc='count',
)NoNeed more information to determine
(b) (2 points) Pivot table:
t.pivot_table(index='is_ca', columns='is_tool', values='cost', aggfunc='mean',
)YesNoNeed more information to determine

Name: \qquad

Question 6 .9 points
(M) For each hypothesis test below, select the one correct procedure to simulate a single sample under the null hypothesis, and select the one test statistic that can be used for the hypothesis test among the choices given. For convenience, the first few rows of df (top) and survey (bottom) are displayed below; see your Reference Sheet for the full details.

(a) (3 points) Null: Every purchase is equally likely to happen in all 50 states.

Alternative: At least one state is more likely to have purchases than others.

Simulation procedure:np.random.multinomial(len(df), [1/50] * 50)np.random.multinomial(len(survey), $[1 / 50] * 50$)np.random.multinomial(len(df), [1/2] * 2) np.random. permutation(df['state'])

Test statistic:

Difference in meansAbsolute difference in meansTotal variation distanceK-S test statistic(b) (3 points) Null: The income distribution of people who smoke marijuana is the same as the income distribution for people who don't smoke marijuana.
Alternative: The income distributions are different.

Simulation procedure:
np.random.multinomial(len(survey), [1/50] * 50)np.random.multinomial(len(survey), [1/2] * 2)np.random. permutation(survey['income'])

Test statistic:Difference in meansAbsolute difference in meansTotal variation distance
K-S test statistic
(c) (3 points) Null: The distribution of prices for items with missing categories is the same as the distribution of prices for items with recorded categories.
Alternative: Items with missing categories are more expensive than items with with recorded categories.

Simulation procedure:np.random.multinomial(len(df), [1/50] * 50)np.random.multinomial(len(df), [1/2] * 2)np. random. permutation(df['cost'])

Test statistic:

Difference in meansAbsolute difference in meansTotal variation distance
K-S test statistic

Name: \qquad

Question 7

(M) Suppo from the cost likely Sam's data is stored in a DataFrame called missing.
To recover the missing values, Sam applies the imputation methods below to the cost column in missing, then recalculates the mean of the cost column. For each imputation method, choose whether the new mean will be lower $(-)$, higher $(+)$, exactly the same $(=)$, or approximately the same (\approx) as the original mean of the cost column in df (the data without any missing observations).
(a) (2 points) missing['cost'].fillna(missing['cost'].mean())$+$$=$$\approx$
(b) (2 points)
def mystery(s):
return s.fillna(s.mean())
missing.groupby('state')['cost'].transform(mystery).mean()

$+$$\approx$
(c) (2 points)
def mystery2(s):
$\mathrm{s}=\mathrm{s} . \operatorname{copy}(\mathrm{s})$
$\mathrm{n}=\mathrm{s}$. isna().sum()
fill_values = np.random.choice(s.dropna(), n)
s[s.isna()] = fill_values
return s
missing.groupby('state')['cost'].transform(mystery2).mean()-
$0=$$\approx$

Name: \qquad

Question 8 points
Suppose you are trying to scrape album names from a website. The website has an HTML table structured as follows:

```
<table><thead>
    <tr>
        <th>Name</th> <th>Price</th> <th>Number of Reviews</th>
    </tr></thead>
<tbody>
    <tr class="row">
        <td>Radical Optimism</td> <td>25</td> <td>10000</td>
    </tr>
    <tr class="row">
            <td>Hit Me Hard and Soft</td> <td>30</td> <td>12000</td>
    </tr>
    <tr class="row">
            <td>SOS</td> <td>18</td> <td>30000</td>
    </tr>
    <!-- 997 <tr> elements omitted -->
</tbody>
</table>
```

Notice that the <tbody> tag contains 1000 <tr> elements, but only the first three are shown above. Suppose that you've read the HTML table above into a BeautifulSoup object called soup. Fill in the code below so that the albums variable contains a list of all the album names with (strictly) more than 15,000 reviews.

```
albums = []
for tag in soup.find_all(___(a)___):
    reviews = int(___(b)
```

\qquad

```
    if reviews > 15000:
        album = ___(c)__
        albums.append(album)
```

(a) (2 points) What should go in blank (a)?

Solution:

```
class_="row"
```

(b) (3 points) What should go in blank (b)?

Solution:

```
tag.find_all('td')[2].text
```

(c) (3 points) What should go in blank (c)?

Solution:

tag.find('td').text

Name: \qquad

Question 9

\qquad
You create a table called gums that only contains the chewing gum purchases of $d f$, then you create a bag-of-words matrix called bow from the name column of gums. The bow matrix is stored as a DataFrame shown below:

	pur	gum	\ldots	paperboard	80
0	0	1	\ldots	0	1
1	0	1	\ldots	1	1
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
38	0	0	\ldots	0	0
39	0	0	\ldots	0	1

You also have the following outputs:

>>> bow_df.	(axis=0)	>>> bow_df.sum(axis=1)		>>> bow_df[0, 'pur']0
pur	5	0	21	
gum	41	1	22	
sugar	2	2	22	>>> (bow_df['paperboard'] > 0).sum()
	.		.	20
90	4	37	22	
paperboard	22	38	10	>>> bow_df['gum'].sum()
80	20	39	17	41
Length: 139			th: 40	

For each question below, write your answer as an unsimplified math expression (no need to simplify fractions or logarithms) in the space provided, or select "Need more information" if there is not enough information provided to answer the question.
(a) (2 points) What is the TF-IDF for the word pur in document 0 ?

Solution: 0

Need more information(b) (2 points) What is the TF-IDF for the word gum in document 0 ?

Solution:

Need more information
(c) (3 points) What is the TF-IDF for the word paperboard in document 1 ?

Solution:

$$
\frac{1}{22} \log \left(\frac{40}{20}\right)=\frac{1}{22}
$$

\qquad Need more information

Name: \qquad

Question 10 17 points
The two plots below show the total number of boots (top) and sandals (bottom) purchased per month in the df table. Assume that there is one data point per month.

For each of the following regression models, use the visualizations shown above to select the value that is closest to the fitted model weights. If it is not possible to determine the model weight, select "Not enough info". For the models below: the notation boot refers to the number of boots sold; sandal refers to the number of sandals sold; summer $=1$ is a column with value 1 if the month is between March (03) and August (08), inclusive; and winter $=1$ is a column with value 1 if the month is between September (09) and February (02), inclusive.
(a) (2 points) boot $=w_{0}$
$w_{0}: \bigcirc 0$
50 100Not enough info
(b) (4 points) boot $=w_{0}+w_{1} \cdot$ sandal

$w_{0}: ~ \bigcirc-100$
$w_{1}:$
w_{1}
$\bigcirc-100$
$\bigcirc-1$

(c) (4 points) boot $=w_{0}+w_{1} \cdot($ summer $=1)$

(d) (4 points) sandal $=w_{0}+w_{1} \cdot($ summer $=1)$

$w_{0}:$	$\bigcirc-20$	\bigcirc	-1	\bigcirc	0	\bigcirc	1	\bigcirc
$w_{1}:$	$\bigcirc-80$	\bigcirc	-1	\bigcirc	0	\bigcirc	1	\bigcirc

(e) (3 points) sandal $=w_{0}+w_{1} \cdot($ summer $=1)+w_{2} \cdot($ winter $=1)$

Name: \qquad
 Suppose you fit four different models to predict whether someone has an income greater than $\$ 100,000$ a year using their purchase history. You split the data into a training and test set and use 3-fold cross-validation. The table below shows all the calculated accuracies for each model (higher accuracy is better).

	train	fold 1	fold 2	fold 3	test
Model A	0.5	0.4	0.5	0.3	0.4
Model B	0.7	0.6	0.8	0.9	0.5
Model C	0.8	0.9	0.2	0.1	0.6
Model D	1.0	0.8	0.3	0.5	0.3

(a) (2 points) Which model has the lowest model bias?Model AModel BModel CModel D
(b) (2 points) Which model most severely underfits the data?Model A \bigcircModel BModel CModel D
(c) (2 points) Which model most severely overfits the data?Model AModel BModel CModel D
(d) (3 points) Which model should you pick overall?
\qquad Model AModel BModel C \square Model D

Name: \qquad

Question 12. 8 points
Suppose you fit a decision tree to the training set below, using the features x 0 and x 1 to predict the outcome y.

$x 0$	$x 1$	y
0	0	0
0	1	0
0	2	1
1	0	0
1	1	1
2	0	1
2	1	1
3	0	1

Write the first four splitting rules that are created by the decision tree when fitting this training set (using weighted entropy). Assume that the tree is constructed in a depth-first order. If two candidate splits have the same weighted entropy, choose the one that splits on $x 0$.
(a) The first splitting rule is: \qquad (i) _ < \qquad
i. (1 point) What goes in blank (i)?

```
x0
```

```\(\times 1\)
```

ii. (1 point) What goes in blank (ii)?0123
(b) The second splitting rule is: \qquad (i) \qquad <= ___(ii)__-
i. (1 point) What goes in blank (i)? Ox0x 1
ii. (1 point) What goes in blank (ii)?12 ○ 3
(c) The third splitting rule is: \qquad (i)__- \qquad __(ii) \qquad
i. (1 point) What goes in blank (i)?x0
ii. (1 point) What goes in blank (ii)?12 \square 3
(d) The fourth splitting rule is: \qquad (i) <= ___(ii)_ \qquad
i. (1 point) What goes in blank (i)?
\qquad x 0x 1
ii. (1 point) What goes in blank (ii)?
$\bigcirc 0$
\qquad $1 \bigcirc$ $2 \bigcirc$ 3

Name: \qquad

Solution: Here is a plot of the training data:

Here is a plot of the fitted tree (from scikit-learn):

Name: \qquad

Question 13

 7 pointsSuppose you fit a logistic regression classifier. The classifier's predictions on a test set of 5 points are shown below, along with the actual labels.

Predicted Probability	Actual \mathbf{y}
0.3	1
0.4	0
0.6	1
0.7	1
0.3	0

Recall that for logistic regression, we must also choose a threshold τ to convert the predicted probabilities to predicted labels. For this question, assume that $0<\tau<1$. For this question, precision is undefined when the classifier doesn't make any positive predictions (since $\frac{0}{0}$ is undefined). For each question, show your work and draw a box around your final answer in the space provided. Each of your final answers should be a single number.

Solution: The easiest way to solve this problem is to plot the precision-recall curve, which looks like this:

(a) (2 points) What is the lowest possible precision for any threshold τ ?

Solution: The lowest precision happens when τ is less than 0.3 . In this case, the classifier predicts all points are 1, which gives a precision of $\frac{3}{5}$.
(b) (2 points) What is the lowest possible recall for any threshold τ ?

Solution: The lowest recall happens when τ is greater than 0.7 . In this case, the classifier predicts all points are 0 , which gives a recall of 0 .

Name:
(c) (3 points) What is the highest possible recall if the classifier achieves a precision of 1 ?

Solution: If precision is 1 , the threshold must be greater than 0.4 . Of these thresholds, the recall is greatest when the threshold is between 0.4 and 0.6 . In this case, the recall is $\frac{2}{3}$.

Name:

Question 14. 0 points Optional: Draw a Picture About UCSD Data Science (or use this page for scratch work)

