
Final Exam Version A - DSC 80, Spring 2024

Instructions:

• This exam consists of 14 questions. A total of 100 points are available.

• Questions marked with (M) will be used for your midterm exam redemption.

• Write name in the top right of each page in the space provided.

• Please write neatly in the provided answer boxes. We will not grade work that appears elsewhere.

• Completely fill in bubbles and square boxes.
⃝ A bubble means that you should only select one choice.
2 A square box means you should select all that apply.

• You may refer to two 8.5" × 11" sheets of notes of your own creation. No other resources or
technology (including calculators) are permitted.

• Do not turn the page until instructed to do so.

Last name

First name

Student ID number

UCSD email

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)



Name:

This page is intentionally left blank. Feel free to use it as scratch paper.
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Name:

Question 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 points
(M) Fill in Python code below so that the last line of each code snippet evaluates to each desired result,
using the df and survey DataFrames described on Page 1 of the Reference Sheet. You may not use
for or while loops in any answer for this question. For convenience, the first few rows of df (top)
and survey (bottom) are displayed below; see your Reference Sheet for the full details.

(a) (2 points) Find the participant ID of the person who made the most recent purchase in the dataset.

df.sort_values( , ascending=True).iloc[ , ]

(b) (4 points) Create a DataFrame that compares the range of item costs for people with diabetes and
people that don’t have diabetes. The DataFrame should by indexed by the unique values in the
diabetes column (Yes and No) and have one column: the range of item costs (max cost - min cost)
for each group.

def f(x):

return

(df.merge(survey, on=’id’)

.groupby( )[ ]

. (f))

Question 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 points
(a) (1 point) (M) What is the most likely missingness mechanism for the state column in df?

⃝ Missing by design
⃝ Missing completely at random
⃝ Missing at random
⃝ Not missing at random

(b) (1 point) (M) What is the most likely missingness mechanism for the income column in survey?
⃝ Missing by design
⃝ Missing completely at random
⃝ Missing at random
⃝ Not missing at random
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Name:

Question 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 points
(M) The code snippet below uses a for loop.

mystery = 0
for i in df['id'].unique():

temp = df[df['id'] == i]
if temp['q'].sum() > 100:

mystery += 1

(a) (5 points) Rewrite the snippet without using any loops.

mystery = (df.groupby( )

. (lambda x: )

[ ]. () )

(b) (2 points) Suppose you see the output below:
>>> df['id'].value_counts()
P2955 200
P3001 150
P3125 100
Name: id, Length: 3, dtype: int64

Fill in the blank in the sentence below with a single number.

The code without for loops runs approximately times faster than the code with a
for loop.

Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 points
You want to use regular expressions to extract out the number of ounces from the 5 product names below.

Index Product Name Expected Output
0 Adult Dog Food 18-Count, 3.5 oz Pouches 3.5
1 Gardetto’s Snack Mix, 1.75 Ounce 1.75
2 Colgate Whitening Toothpaste, 3 oz Tube 3
3 Adult Dog Food, 13.2 oz. Cans 24 Pack 13.2
4 Keratin Hair Spray 2!6 oz 6

The names are stored in a pandas Series called names. For each snippet below, select the indexes for all
the product names that will not be matched correctly.
(a) (5 points) Snippet:

regex = r'([\d.]+) oz'
names.str.findall(regex)

2 0 2 1 2 2 2 3 2 4 2 All names will be matched correctly.
(b) (5 points) Snippet:

regex = r'(\d+?.\d+) oz|Ounce'
names.str.findall(regex)

2 0 2 1 2 2 2 3 2 4 2 All names will be matched correctly.
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Question 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 points
(M) Suppose you define a DataFrame t as follows:

t = (survey.merge(df, on='id', suffixes=('', '2'))
.assign(is_ca=t['state'] == 'California',

is_boot=t['cat'] == 'BOOT',
is_tool=t['cat'] == 'TOOLS'))

The first few rows of t are shown below:

For each pivot table below, state whether it is possible to observe Simpson’s paradox without any extra
information about the data.
(a) (2 points) Pivot table:

t.pivot_table(
index='is_ca',
columns='is_boot',
values='cost',
aggfunc='count',

)

⃝ Yes ⃝ No ⃝ Need more information to determine

(b) (2 points) Pivot table:
t.pivot_table(

index='is_ca',
columns='is_tool',
values='cost',
aggfunc='mean',

)

⃝ Yes ⃝ No ⃝ Need more information to determine
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Question 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 points
(M) For each hypothesis test below, select the one correct procedure to simulate a single sample under
the null hypothesis, and select the one test statistic that can be used for the hypothesis test among the
choices given. For convenience, the first few rows of df (top) and survey (bottom) are displayed below;
see your Reference Sheet for the full details.

(a) (3 points) Null: Every purchase is equally likely to happen in all 50 states.
Alternative: At least one state is more likely to have purchases than others.

Simulation procedure:

⃝ np.random.multinomial(len(df), [1/50] * 50)

⃝ np.random.multinomial(len(survey), [1/50] * 50)

⃝ np.random.multinomial(len(df), [1/2] * 2)

⃝ np.random.permutation(df[’state’])

Test statistic:

⃝ Difference in means
⃝ Absolute difference in means
⃝ Total variation distance
⃝ K-S test statistic

(b) (3 points) Null: The income distribution of people who smoke marijuana is the same as the income
distribution for people who don’t smoke marijuana.
Alternative: The income distributions are different.

Simulation procedure:

⃝ np.random.multinomial(len(survey), [1/50] * 50)

⃝ np.random.multinomial(len(survey), [1/2] * 2)

⃝ np.random.permutation(survey[’income’])

Test statistic:

⃝ Difference in means
⃝ Absolute difference in means
⃝ Total variation distance
⃝ K-S test statistic

(c) (3 points) Null: The distribution of prices for items with missing categories is the same as the distribution
of prices for items with recorded categories.
Alternative: Items with missing categories are more expensive than items with with recorded categories.

Simulation procedure:

⃝ np.random.multinomial(len(df), [1/50] * 50)

⃝ np.random.multinomial(len(df), [1/2] * 2)

⃝ np.random.permutation(df[’cost’])

Test statistic:

⃝ Difference in means
⃝ Absolute difference in means
⃝ Total variation distance
⃝ K-S test statistic
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Question 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 points
(M) Suppose that df doesn’t have any missing data in the cost column. Sam accidentally loses values
from the cost column and values are more likely to be missing for states with expensive purchases.
Sam’s data is stored in a DataFrame called missing.
To recover the missing values, Sam applies the imputation methods below to the cost column in missing,
then recalculates the mean of the cost column. For each imputation method, choose whether the new
mean will be lower (-), higher (+), exactly the same (=), or approximately the same (≈) as the original
mean of the cost column in df (the data without any missing observations).

(a) (2 points) missing['cost'].fillna(missing['cost'].mean())

⃝ - ⃝ + ⃝ = ⃝ ≈

(b) (2 points)
def mystery(s):

return s.fillna(s.mean())
missing.groupby('state')['cost'].transform(mystery).mean()

⃝ - ⃝ + ⃝ = ⃝ ≈

(c) (2 points)
def mystery2(s):

s = s.copy()
n = s.isna().sum()
fill_values = np.random.choice(s.dropna(), n)
s[s.isna()] = fill_values
return s

missing.groupby('state')['cost'].transform(mystery2).mean()

⃝ - ⃝ + ⃝ = ⃝ ≈
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Question 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 points
Suppose you are trying to scrape album names from a website. The website has an HTML table structured
as follows:

<table><thead>
<tr>
<th>Name</th> <th>Price</th> <th>Number of Reviews</th>

</tr></thead>
<tbody>
<tr class="row">
<td>Radical Optimism</td> <td>25</td> <td>10000</td>

</tr>
<tr class="row">
<td>Hit Me Hard and Soft</td> <td>30</td> <td>12000</td>

</tr>
<tr class="row">
<td>SOS</td> <td>18</td> <td>30000</td>

</tr>
<!-- 997 <tr> elements omitted -->

</tbody>
</table>

Notice that the <tbody> tag contains 1000 <tr> elements, but only the first three are shown above.
Suppose that you’ve read the HTML table above into a BeautifulSoup object called soup. Fill in the
code below so that the albums variable contains a list of all the album names with (strictly) more than
15,000 reviews.

albums = []
for tag in soup.find_all(___(a)___):

reviews = int(___(b)___)
if reviews > 15000:

album = ___(c)___
albums.append(album)

(a) (2 points) What should go in blank (a)?

(b) (3 points) What should go in blank (b)?

(c) (3 points) What should go in blank (c)?
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Question 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 points
You create a table called gums that only contains the chewing gum purchases of df, then you create a
bag-of-words matrix called bow from the name column of gums. The bow matrix is stored as a DataFrame
shown below:

You also have the following outputs:

>>> bow_df.sum(axis=0) >>> bow_df.sum(axis=1) >>> bow_df[0, 'pur']
pur 5 0 21 0
gum 41 1 22
sugar 2 2 22 >>> (bow_df['paperboard'] > 0).sum()

.. .. 20
90 4 37 22
paperboard 22 38 10 >>> bow_df['gum'].sum()
80 20 39 17 41
Length: 139 Length: 40

For each question below, write your answer as an unsimplified math expression (no need to simplify
fractions or logarithms) in the space provided, or select "Need more information" if there is not enough
information provided to answer the question.
(a) (2 points) What is the TF-IDF for the word pur in document 0?

⃝ Need more information

(b) (2 points) What is the TF-IDF for the word gum in document 0?

⃝ Need more information

(c) (3 points) What is the TF-IDF for the word paperboard in document 1?

⃝ Need more information
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Question 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 points
The two plots below show the total number of boots (top) and sandals (bottom) purchased per month in
the df table. Assume that there is one data point per month.

For each of the following regression models, use the visualizations shown above to select the value that
is closest to the fitted model weights. If it is not possible to determine the model weight, select “Not
enough info”. For the models below: the notation boot refers to the number of boots sold; sandal refers
to the number of sandals sold; summer=1 is a column with value 1 if the month is between March (03) and
August (08), inclusive; and winter=1 is a column with value 1 if the month is between September (09)
and February (02), inclusive.
(a) (2 points) boot = w0

w0: ⃝ 0 ⃝ 50 ⃝ 100 ⃝ Not enough info

(b) (4 points) boot = w0 + w1 · sandal
w0: ⃝ -100 ⃝ -1 ⃝ 0 ⃝ 1 ⃝ 100 ⃝ Not enough info
w1: ⃝ -100 ⃝ -1 ⃝ 1 ⃝ 100 ⃝ Not enough info

(c) (4 points) boot = w0 + w1 · (summer=1)
w0: ⃝ -100 ⃝ -1 ⃝ 0 ⃝ 1 ⃝ 100 ⃝ Not enough info
w1: ⃝ -80 ⃝ -1 ⃝ 0 ⃝ 1 ⃝ 80 ⃝ Not enough info

(d) (4 points) sandal = w0 + w1 · (summer=1)
w0: ⃝ -20 ⃝ -1 ⃝ 0 ⃝ 1 ⃝ 20 ⃝ Not enough info
w1: ⃝ -80 ⃝ -1 ⃝ 0 ⃝ 1 ⃝ 80 ⃝ Not enough info

(e) (3 points) sandal = w0 + w1 · (summer=1) + w2 · (winter=1)
w0: ⃝ -20 ⃝ -1 ⃝ 0 ⃝ 1 ⃝ 20 ⃝ Not enough info
w1: ⃝ -80 ⃝ -1 ⃝ 0 ⃝ 1 ⃝ 80 ⃝ Not enough info
w2: ⃝ -80 ⃝ -1 ⃝ 0 ⃝ 1 ⃝ 80 ⃝ Not enough info
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Question 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 points
Suppose you fit four different models to predict whether someone has an income greater than $100,000
a year using their purchase history. You split the data into a training and test set and use 3-fold
cross-validation. The table below shows all the calculated accuracies for each model (higher accuracy is
better).

(a) (2 points) Which model has the lowest model bias?
⃝ Model A ⃝ Model B ⃝ Model C ⃝ Model D

(b) (2 points) Which model most severely underfits the data?
⃝ Model A ⃝ Model B ⃝ Model C ⃝ Model D

(c) (2 points) Which model most severely overfits the data?
⃝ Model A ⃝ Model B ⃝ Model C ⃝ Model D

(d) (3 points) Which model should you pick overall?
⃝ Model A ⃝ Model B ⃝ Model C ⃝ Model D
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Question 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 points
Suppose you fit a decision tree to the training set below, using the features x0 and x1 to predict the
outcome y.

Write the first four splitting rules that are created by the decision tree when fitting this training set
(using weighted entropy). Assume that the tree is constructed in a depth-first order. If two candidate
splits have the same weighted entropy, choose the one that splits on x0.
(a) The first splitting rule is: ___(i)___ <= ___(ii)___

i. (1 point) What goes in blank (i)?
⃝ x0 ⃝ x1

ii. (1 point) What goes in blank (ii)?
⃝ 0 ⃝ 1 ⃝ 2 ⃝ 3

(b) The second splitting rule is: ___(i)___ <= ___(ii)___

i. (1 point) What goes in blank (i)?
⃝ x0 ⃝ x1

ii. (1 point) What goes in blank (ii)?
⃝ 0 ⃝ 1 ⃝ 2 ⃝ 3

(c) The third splitting rule is: ___(i)___ <= ___(ii)___

i. (1 point) What goes in blank (i)?
⃝ x0 ⃝ x1

ii. (1 point) What goes in blank (ii)?
⃝ 0 ⃝ 1 ⃝ 2 ⃝ 3

(d) The fourth splitting rule is: ___(i)___ <= ___(ii)___

i. (1 point) What goes in blank (i)?
⃝ x0 ⃝ x1

ii. (1 point) What goes in blank (ii)?
⃝ 0 ⃝ 1 ⃝ 2 ⃝ 3
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Question 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 points
Suppose you fit a logistic regression classifier. The classifier’s predictions on a test set of 5 points are
shown below, along with the actual labels.

Recall that for logistic regression, we must also choose a threshold τ to convert the predicted probabilities
to predicted labels. For this question, assume that 0 < τ < 1. For this question, precision is undefined
when the classifier doesn’t make any positive predictions (since 0

0 is undefined). For each question, show
your work and draw a box around your final answer in the space provided. Each of your final answers
should be a single number.
(a) (2 points) What is the lowest possible precision for any threshold τ?

(b) (2 points) What is the lowest possible recall for any threshold τ?

(c) (3 points) What is the highest possible recall if the classifier achieves a precision of 1?
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Question 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 points
Optional: Draw a Picture About UCSD Data Science (or use this page for scratch work)
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