
DSC 80 winter 2025
midterm review

TA: Mizuho Fukuda
Tutors: Gabriel Cha, Ylesia Wu

midterm logistics
● tuesday, 2/11 in class

● 11:00 am - 12:20 pm in SOLIS 104

● see seating chart here

● 80 minutes paper exam

● 1 sheet of hand-written notes (front + back)

● lectures 1-8 (no HTML)

https://docs.google.com/spreadsheets/d/1hRbWb69Lg6uuCsu5Zr9wXCo2wa_X8KSVPDJK47_73tE/edit?gid=1135995585#gid=1135995585

table of contents

01

02

06

numpy / pandas
basics

aggregating

merging

04

05

06

hypothesis &
permutation tests

missingness &
imputation

questions

numpy and pandas
basics

numpy basics

numpy supports vectorized operations (quicker than a loop)

📝methods to note

● np.arange(start, stop, step)

● np.random.choice(a, size, replace, p)

● np.random.multinomial(n, pvals, size)

● np.random.permutation(x)

pandas basics

📝.loc vs. .iloc

.loc: access a group of rows and columns

by labels or boolean arrays

→ heroes.loc[‘A-Bomb’, ‘Gender’]

.iloc: access rows and columns by

integer-location-based indexing.

→ heroes.iloc[0, 0]

dataframe: heroes

pandas basics

query: a special case of .loc

e.g. get all the heroes with blue eyes

heroes.loc[heroes[‘Eye color’] == ‘blue’]

pandas basics

query: a special case of .loc

e.g. get all the heroes with blue eyes

heroes.loc[{True, False, True, … , False, False}]

→ a subset of heroes with only rows that are True

pandas basics

query: a special case of .loc

e.g. get all the heroes with blue eyes

heroes.loc[heroes[‘Eye color’] == ‘blue’]

=

heroes[[heroes[‘Eye color’] == ‘blue’]]

pandas basics

query: a special case of .loc

get all the heroes with blue eyes and blond hair:
heroes.loc[(heroes[‘Eye color’] == ‘blue’) & (heroes[‘Hair color’] == ‘blond’)]

get all the heroes with blue eyes or blond hair:
heroes.loc[(heroes[‘Eye color’] == ‘blue’) | (heroes[‘Hair color’] == ‘blond’)]

● ‘&’ is for ‘and’

● ‘|’ is for ‘or’

pandas basics
📝more pandas methods

● df.sort_values(‘column’or [‘col1’, ‘col2’], ascending=True)

● df.set_index(‘column’)

● df[‘col’] → Series; df[[‘col1’,...,’col2’]] → sub DataFrame

● df.index → index object (not a python list)

● ser.unique() → numpy array

● ser.nunique() → int

● ser.value_counts() → Series (index: unique values, values: counts)

● ser.idxmax()

● ser.astype(some type)

pandas basics

● df.assign(column_name = some Series)

→ not in place; creates a copy of the df

● df[‘column_name’] = some Series

→ modifies the original df

not in quotes

pandas basics

● .str accessor: allows you to use string methods

○ df['str_col'].str.lower()

○ df['str_col'].str.strip().str.replace(‘,’, ‘’)

● .dt accessor: allows you to use datetime methods

○ df['date_col'].dt.day

○ df['date_col'].dt.dayofweek

aggregating

definition of aggregation
In pandas, aggregation refers to the process of applying a function to summarize or
compute a single result from a set of values in a Series or grouped DataFrame.

simpson’s paradox

📝simpson's paradox is a result of weighted averages

unit price of each product at each store:

if each store sold 1 unit of each item:

Average Revenue of Store A (R_a)=
(1(1) + 1(5) + 1(20)) / 3 = 8.667

Average Revenue of Store B (R_b)=
(1(3) + 1(7) + 1(30)) / 3 = 13.333

As expected, R_a < R_b. → no paradox

<

<

<

simpson’s paradox

📝simpson's paradox is a result of weighted averages

unit price of each product at each store:
now let’s say:
store A sells a lot of product Z
and store B sells a lot of product X

Average Revenue of Store A (R_a)=
(1(1) + 1(5) + 20(20)) / 22 = 18.455

Average Revenue of Store B (R_b)=
(20(3) + 1(7) + 1(30)) / 22 = 4.409

R_a > R_b → simpson’s paradox

<

<

<

DSC80 FA23 Midterm Question 2

https://practice.dsc80.com/fa23-midterm/index.html

remember, simpson’s paradox is a result of weighted averages!

DSC80 FA23 Midterm Question 2

https://practice.dsc80.com/fa23-midterm/index.html

Groupby.agg

input

output

aggregate functions are applied to
each column of each group
→ outputs a single value per column per group

functions like .mean() or .count() are built in agg functions.
this is the same thing as doing .agg(mean)

Groupby.agg
input

output

custom agg functions for more complex operations

Groupby.agg vs Groupby.apply
The input:

function passed into .agg takes in a Series
(each column of the original df for each group)

the function passed into .apply takes in a
DataFrame (all columns for each group)

The output:

Groupby.agg vs Groupby.apply

function passed into .agg must return
a single value per group

Groupby.agg vs Groupby.apply

.apply is much more flexible:
function passed into apply can output a single
value, a Series, or a DataFrame.

← DataFrame with shape (2,2)
← scalar

Groupby.agg vs Groupby.apply

.apply can do the everything that .agg can and more!

why would i use .agg then?

RUNTIME!
.agg is optimized to handle aggregation (Series to scalar operation)
so it runs much faster than .apply!

conclusion:
use .agg for simple aggregation. only use .apply when doing complex
operations that .agg cannot handle.

Groupby.filter

input:
● function passed into .filter must

take in a DataFrame
● one DataFrame per group

output:
● function passed into .filter must

return a single boolean
● one boolean per group

result:
● keep only the rows belonging to the

group that are True based on the filter
function

single boolean

Groupby.transform

input:
● function passed into .transform must

take in a Series
● one Series per column per group

output:
● function passed into .transform must

return the same size Series
result:

● the same size DataFrame as the
original, with values transformed
within each group

does not change shape of x

same size as before.
no rows or columns lost.

pivot table
● grouping by two columns → turning one group into columns

pivot

Find all the unique people who did not eat any food containing the word “beans”.

def foo(x):
 return ____________

df.groupby(____________).____________(foo)['name'].unique()

DSC80 FA23 Midterm Question 1

https://practice.dsc80.com/fa23-midterm/index.html

Compute a DataFrame containing the proportion of 4-digit
address numbers for each unique street in h.

def foo(x):
 lengths = __________
 return (lengths == 4).mean()

h.groupby(__________).__________(foo)

DSC80 SP24 Midterm Question 1

https://practice.dsc80.com/sp24-midterm/index.html

merging

merging

inner merge
● one row for each match
● does not include rows with no match

do not appear in merged df because there is
not matching value in the other df.

left merge
● one row for each match
● includes all rows of the left df even if there is no

match on the right df.
● unmatched rows are filled with np.nan

appears in merged df NaN NaN

right merge
● same logic as left merge but all rows of the right df

are kept regardless of whether there is a match in the
left df.

appears in merged df

outer merge
● still one row per match
● unmatched rows from both dfs appear in the merged df.

both appear in merged df

tasks: clients:

Fill in the code below so that it produces a DataFrame which has all of the columns that
appear in tasks, but with two additional columns, rate and activity, listing the pay rate for each
task and whether the client being consulted for is still active. The number of rows in your
resulting DataFrame should be equal to the number of rows in tasks for which the value in
'client' is in clients.

tasks.merge(clients, how=_________, __________________, __________________)

DSC80 SP22 Midterm Question 9

https://practice.dsc80.com/fa22-midterm/index.html

hypothesis &
permutation tests

hypothesis test permutation test

hypothesis test
I have a sample S.
I also have a population P.

Question:
Does sample S look like it is drawn
from population P?

permutation test
I have two samples: A and B.
I don’t know anything about the
populations they come from.

Question:
Do samples A and B look like they are from
the same distribution? In other words, do
these samples look similar?

null and alternative hypotheses

null hypothesis
● must be an exact statement
● serves as your assumed ground truth when simulating empirical

distribution
● e.g. exactly 4% of cookies from the store are burnt

alternative hypothesis🤔
● what you suspect may be the case based on what you observe
● could be >, < or ≠
● e.g. more than 4% of cookies from the store are burnt

test statistics
● a single summary statistic

○ e.g. proportion of cookies burnt
● difference in means

○ mean_sampleA - mean_sampleB
● absolute difference in means

○ | mean_sampleA - mean_sampleB |
● TVD

○ measures similarity between two categorical distributions
● K-S test statistic (Kolmogorov-Smirnov)

○ scipy.stats.ks_2samp(A, B).statistic
○ measures similarity between two numerical distributions

putting everything together…
general workflow for hypothesis test:

1. decide on a test statistic.

2. compute test statistic for the the sample (this is your observed test statistic)

3. state null and alternative hypotheses

4. simulate test statistics based on null distribution

5. calculate p-value:

proportion of the simulated test statistics that are at least as extreme as the

observed test statistic

general workflow for hypothesis test (using the cookies example from lab4):
1. test statistic:

proportion of burnt cookies
2. compute observed test statistic:

proportion of burnt cookies you observe = 15/250 = 0.06
3. state hypotheses:
4. null: proportion of burnt cookies = 0.04 (supposed ground truth)

alternative: proportion of burnt cookies > 0.04 (because i observed 0.06)
5. simulate test statistics based on null distribution

np.random.multinomial(250, [0.96, 0.04], N)
→ assuming the store is telling the truth, i simulate N batches of 250 cookies

6. calculate p-value:
num_burnt = simulations[:, 1]
p-value = np.count_nonzero(num_burnt >= 15) / N

general workflow for permutation test:

1. decide on a test statistic.

2. compute test statistic for the the two samples (observed test statistic)

3. state null and alternative hypotheses

4. simulate test statistics by shuffling the labels

5. calculate p-value:

proportion of the simulated test statistics that are at least as extreme as the

observed test statistic

general workflow for permutation test (using the skittles example from lab4):

1. test statistic:

TVD (comparing two categorical distributions)

2. compute test statistic:

TVD between color distribution of Waco and Yorkville

3. state null and alternative hypotheses

null: there is no difference between the two factories’ color distributions

alternative: there is a difference between the two factories’ color distributions

4. simulate test statistics

sk['Factory'] = np.random.permutation(sk['Factory'])

simulated_tvds.append(tvd(dg))

→ repeat N times

5. calculate p-value: (np.array(simulated_tvds) >= observed).mean()

visualizing empirical distribution & p-value

observed

p-value

The first few rows of the o DataFrame are shown
below. For this problem, assume that some of
the duration values are missing.

For each test, select the one correct procedure
to simulate a single sample under the null
hypothesis, and select all test statistics that can
be used for the hypothesis test among the
choices given.

DSC80 SP24 Midterm Question 5

https://practice.dsc80.com/sp24-midterm/index.html

The first few rows of the o DataFrame are shown
below. For this problem, assume that some of
the duration values are missing.

For each test, select the one correct procedure
to simulate a single sample under the null
hypothesis, and select all test statistics that can
be used for the hypothesis test among the
choices given.

DSC80 SP24 Midterm Question 5

https://practice.dsc80.com/sp24-midterm/index.html

The first few rows of the o DataFrame are shown
below. For this problem, assume that some of
the duration values are missing.

For each test, select the one correct procedure
to simulate a single sample under the null
hypothesis, and select all test statistics that can
be used for the hypothesis test among the
choices given.

DSC80 SP24 Midterm Question 5

https://practice.dsc80.com/sp24-midterm/index.html

missingness &
imputation

● missing by design (MD)

when data is intentionally left out; you know exactly what a missing value in

that column represents

● not missing at random (NMAR)

when the chance of a value being missing is dependent on the missing value

itself

● missing at random (MAR)

when the chance of a value being missing is dependent on other columns

● missing completely at random (MCAR)

when the chance of a value being missing is completely due to chance

missingness mechanisms

testing MAR of column X dependent on Y

from lecture 8

permutation test

group A: X is missing

group B: X is not missing

null:

the distribution of variable Y is the same

for group A and B

alternative:

the distribution of variable Y is different

for groups A and B

https://dsc80.com/resources/lectures/lec08/lec08.html

At the Estancia La Jolla, the hotel manager enters information about each reservation in the DataFrame guests,
after guests check into their rooms. Specifically, guests has the columns:

● "id" (str): The booking ID (e.g. "SN1459").
● "age" (int): The age of the primary occupant (the person who made the reservation).
● "people" (int): The total number of occupants.
● "is_business" (str): Whether or not the trip is a business trip for the primary occupant (possible values:

"yes", "no", and "partially").
● "company" (str): The company that the primary occupant works for, if this is a business trip.
● "loyalty" (int): The loyalty number of the primary occupant. Note that most business travelers have a

loyalty number.

Some of the values in guests are missing.

What is the most likely missingness mechanism of the "loyalty" column?

A. Missing by design
B. Missing at random
C. Not missing at random
D. Missing completely at random DSC80 WI24 Final Question 2

https://practice.dsc80.com/wi24-final/index.html

At the Estancia La Jolla, the hotel manager enters information about each reservation in the DataFrame guests,
after guests check into their rooms. Specifically, guests has the columns:

● "id" (str): The booking ID (e.g. "SN1459").
● "age" (int): The age of the primary occupant (the person who made the reservation).
● "people" (int): The total number of occupants.
● "is_business" (str): Whether or not the trip is a business trip for the primary occupant (possible values:

"yes", "no", and "partially").
● "company" (str): The company that the primary occupant works for, if this is a business trip.
● "loyalty" (int): The loyalty number of the primary occupant. Note that most business travelers have a

loyalty number.

Some of the values in guests are missing.

What is the most likely missingness mechanism of the "company" column?

A. Missing by design
B. Missing at random
C. Not missing at random
D. Missing completely at random DSC80 WI24 Final Question 2

https://practice.dsc80.com/wi24-final/index.html

Fill in the blanks: To assess whether the missingness of "is_business" depends on "age", we
should perform a __(i)__ with __(ii)__ as the test statistic.

1. What goes in blank (i)?
a. standard hypothesis test
b. permutation test

2. What goes in blank (ii)?
a. the total variation distance
b. the sample mean
c. the (absolute) difference in means
d. the K-S statistic
e. either the (absolute) difference in means or the K-S statistic, depending on the shapes of

the observed distributions

DSC80 WI24 Final Question 2

https://practice.dsc80.com/wi24-final/index.html

imputation
● Imputation with a single value: e.g. mean, median, mode

mean imputation - fill in missing values with the mean of that column

pros: preserves the mean of the observed data

cons: decreases the variance of the data;

creates a biased estimate of the true mean if the data are not MCAR

→ within-group (conditional) mean imputation

using different mean for each group of the column missingness is dependent on

● Probabilistic imputation - fill in missing values by drawing from the distribution of the

non-missing data

pros: preserves the original data’s distribution

cons: random each time (best to do multiple imputations and aggregate the results)

Doris wants to use multiple imputation to fill in the missing values in 'WeightAlt'. She knows that 'WeightAlt' is
MAR conditional on 'BCS' and 'Age', so she will perform multiple imputation conditional on 'BCS' and 'Age' - each
missing value will be filled in with values from a random 'WeightAlt' value from a donkey with the same 'BCS' and
'Age'. Assume that all 'BCS' and 'Age' combinations have observed WegihtAlt values. Fill in the blanks in the code
below to estimate the median of 'WeightAlt' using multiple imputation conditional on 'BCS' and 'Age' with 100
repetitions. A function impute is also partially filled in for you, and you should use it in your answer.

def impute(col):
 col = col.copy()
 n = ____________________
 fill = np.random.choice(____________________)
 col[____________________] = fill
 return col

results = []
for i in range(________):
 imputed = (donkeys.____________(____________________)['WeightAlt'].____________(____________))
 results.append(imputed.median()) DSC80 FA23 Midterm Question 4

donkeys DataFrame:

https://practice.dsc80.com/fa23-midterm/index.html

questions?

CREDITS: This presentation template was created by
Slidesgo, and includes icons by Flaticon, and
infographics & images by Freepik

good luck
tomorrow!

Please keep this slide for attribution

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

