DSC 80 winter 2025 midterm review

TA: Mizuho Fukuda Tutors: Gabriel Cha, Ylesia Wu

midterm logistics

- tuesday, 2/11 in class
- 11:00 am 12:20 pm in SOLIS 104
- see seating chart <u>here</u>
- 80 minutes paper exam
- 1 sheet of hand-written notes (front + back)
- lectures 1-8 (no HTML)

table of contents

numpy and pandas basics

 $\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$

numpy basics

numpy supports vectorized operations (quicker than a loop)

📝 methods to note

- np.arange(start, stop, step)
- np.random.choice(a, size, replace, p)
- np.random.multinomial(n, pvals, size)
- np.random.permutation(x)

📝.loc **vs.**.iloc

. loc: access a group of rows and columns by labels or boolean arrays

 \rightarrow heroes.loc['A-Bomb', 'Gender']

.iloc: access rows and columns by
integer-location-based indexing.
→ heroes.iloc[0, 0]

	Gender	Eye color	Race
name			
A-Bomb	Male	yellow	Human
Abe Sapien	Male	blue	Icthyo Sapien
Abin Sur	Male	blue	Ungaran
Abomination	Male	green	Human / Radiation
Abraxas	Male	blue	Cosmic Entity
Yellowjacket II	Female	blue	Human
Ymir	Male	white	Frost Giant
Yoda	Male	brown	Yoda's species
Zatanna	Female	blue	Human
Zoom	Male	red	

734 rows × 3 columns

query: a special case of . loc

. . .

True

False

False

True

False

729

730

731

732

733

query: a special case of . loc

e.g. get all the heroes with blue eyes heroes.loc[{True, False, True, ..., False, False}]

 \rightarrow a subset of heroes with only rows that are True

	name	Gender	Eye color	Race
1	Abe Sapien	Male	blue	Icthyo Sapien
2	Abin Sur	Male	blue	Ungaran
4	Abraxas	Male	blue	Cosmic Entity
5	Absorbing Man	Male	blue	Human

query: a special case of . loc

e.g. get all the heroes with blue eyes
heroes.loc[heroes['Eye color'] == 'blue']

heroes[[heroes['Eye color'] == 'blue']]

query: a special case of . loc

get all the heroes with blue eyes **and** blond hair:

heroes.loc[(heroes['Eye color'] == 'blue') & (heroes['Hair color'] == 'blond')]

get all the heroes with blue eyes or blond hair: heroes.loc[(heroes['Eye color'] == 'blue') | (heroes['Hair color'] == 'blond')]

- '&' is for 'and'
- '|' is for 'or'

more pandas methods

- df.sort_values('column'or ['col1', 'col2'], ascending=True)
- df.set_index('column')
- df['col'] \rightarrow Series; df[['col1', ..., 'col2']] \rightarrow sub DataFrame
- df.index \rightarrow index object (not a python list)
- ser.unique() \rightarrow numpy array
- ser.nunique() \rightarrow int
- ser.value_counts() → Series (index: unique values, values: counts)
- ser.idxmax()
- ser.astype(some type)

df.assign(column_name = some Series)
 not in quotes

 \rightarrow not in place; creates a copy of the df

• df['column_name'] = some Series

 \rightarrow modifies the original df

- .str accessor: allows you to use string methods
 - o df['str_col'].str.lower()
 - o df['str_col'].str.strip().str.replace(',', '')
- . dt accessor: allows you to use datetime methods
 - o df['date_col'].dt.day
 - o df['date_col'].dt.dayofweek

aggregating

definition of aggregation

Kind Gender Age OwnerID

In pandas, **aggregation** refers to the process of applying a function to summarize or compute a single result from a set of values in a **Series** or **grouped DataFrame**.

Kind								
Cat	1	Q0-2001	Roomba	Cat	male	9	5508	
i i	2	M0-2904	Simba	Cat	male	1	3086	
1	6	Z4-5652	Priya	Cat	female	7	7343	
¦	7	Z4-4045	Simba	Cat	male	0	2700	
1	8	M8-7852	Cookie	Cat	female	8	7606 🌶	
Dog	0	J6-8562	Blackie	Dog	male	11	5168	
	4	P2-7342	Cuddles	Dog	male	13	4378	
	9	J2-3320	Heisenberg	Dog	male	3	1319	
	11	U4-9376	Scout	Dog	female	2	7846	
	12	H8-1429	Lily	Dog	female	3	7846	
Parrot	3	R3-7551	Keller	Parrot	female	2	7908	
	5	X0-8765	Vuitton	Parrot	female	11	7581	
	16	H8-8856	Bandit	Parrot	male	11	6102	
	19	Q0-3593	Oakley	Parrot	female	4	4989	
	20	08-2501	Bandit	Parrot	male	5	1899	

PetID

Name

		PetID	Name	Kind	Gender	Age	OwnerID	
	Kind							
ן ו	Cat	some value						
	Dog	some value						
Pa	arrot	some value						

simpson's paradox

simpson's paradox is a result of **weighted averages**

unit price of each product at each store:

store A store B

product			
Х	1	<	3
Y	5	<	7
z	20	<	30

if each store sold 1 unit of each item:

Average Revenue of Store A (R_a) = (1(1) + 1(5) + 1(20)) / 3 = 8.667

Average Revenue of Store B (R_b) = (1(3) + 1(7) + 1(30)) / 3 = 13.333

As expected, $R_a < R_b$. $\rightarrow \underline{no \ paradox}$

simpson's paradox

simpson's paradox is a result of **weighted averages**

unit price of each product at each store:

	store A	sto	re B
product			
х	1	<	3
Y	5	<	7
z	20	<	30

now let's say:

store A sells a lot of product Z and store B sells a lot of product X

Average Revenue of Store A (R_a)= (1(1) + 1(5) + 20(20)) / 22 = 18.455

Average Revenue of Store B (R_b)= (20(3) + 1(7) + 1(30)) / 22 = 4.409 R_a > R_b \rightarrow simpson's paradox For this question, we'll continue using the df and foods tables form Question 1. Dyaln and Giorgia want to compare their CO_2 emissions. They added a new column called 'bean' to df that contains True if the food was a bean (e.g. "Pinto beans") and False otherwise. Then, they compute the following pivot table:

	Dylan's co2/kg	Giorgia's co2/kg
bean=True	5	10
bean=False	50	80

Each entry in the pivot table is the average CO_2 emissions for Dylan and Giorgia per kg of food they ate (CO_2/kg) for both bean and non-bean foods.

Suppose that overall, Dylan produced an average of $41 \text{ CO}_2/\text{kg}$ of food he ate, while Giorgia produced an average of $38 \text{ CO}_2/\text{kg}$.

Problem 2.2

Dylan and Giorgia want to figure out exactly when Simpson's paradox occurs for their data. Suppose that 0.2 proportion of Dylan's food was bean foods. What range of proportions for Giorgia's bean food would cause Simpson's paradox to occur? Show your work in the space below, **then write your final answer in the blanks at the bottom of the page.** Your final answers should be between 0 and 1. Leave your answers as simplified fractions.

Between _____ and _____

9	Dylan's co2/kg	Giorgia's co2/kg
bean=True	5	10
bean=False	50	80

remember, simpson's paradox is a result of weighted averages!

Groupby.agg

		PetID	Name	Kind	Gender	Age	OwnerID
Kind					İ	npu	t
Cat	1	Q0-2001	Roomba	Cat	male	9	5508
	2	M0-2904	Simba	Cat	male	1	3086
	6	Z4-5652	Priya	Cat	female	7	7343
	7	Z4-4045	Simba	Cat	male	0	2700
	8	M8-7852	Cookie	Cat	female	8	7606
Dog	0	J6-8562	Blackie	Dog	male	11	5168
	4	P2-7342	Cuddles	Dog	male	13	4378
	9	J2-3320	Heisenberg	Dog	male	3	1319
	11	U4-9376	Scout	Dog	female	2	7846
	12	H8-1429	Lily	Dog	female	3	7846
Parrot	3	R3-7551	Keller	Parrot	female	2	7908
	5	X0-8765	Vuitton	Parrot	female	11	7581
	16	H8-8856	Bandit	Parrot	male	11	6102
	19	Q0-3593	Oakley	Parrot	female	4	4989
	20	08-2501	Bandit	Parrot	male	5	1899

aggregate functions are applied to each column of each group → outputs a single value per column per group

> pets.groupby('Kind')[['Age']].mean() Age Kind Cat 7.322581 output Dog 6.789474 Parrot 6.583333

functions like .mean() or .count() are built in agg functions.
this is the same thing as doing .agg(mean)

Groupby.agg

		PetID	Name	Kind	Gender	Age	OwnerID
Kind					i	npu	t
Cat	1	Q0-2001	Roomba	Cat	male	9	5508
	2	M0-2904	Simba	Cat	male	1	3086
	6	Z4-5652	Priya	Cat	female	7	7343
	7	Z4-4045	Simba	Cat	male	0	2700
	8	M8-7852	Cookie	Cat	female	8	7606
Dog	0	J6-8562	Blackie	Dog	male	11	5168
	4	P2-7342	Cuddles	Dog	male	13	4378
	9	J2-3320	Heisenberg	Dog	male	3	1319
	11	U4-9376	Scout	Dog	female	2	7846
	12	H8-1429	Lily	Dog	female	3	7846
Parrot	3	R3-7551	Keller	Parrot	female	2	7908
	5	X0-8765	Vuitton	Parrot	female	11	7581
	16	H8-8856	Bandit	Parrot	male	11	6102
	19	Q0-3593	Oakley	Parrot	female	4	4989
	20	08-2501	Bandit	Parrot	male	5	1899

custom agg functions for more complex operations

Age

Groupby.agg vs Groupby.apply

The input:

function passed into **.agg** takes in a Series (each column of the original df for each group)

def my_agg_func(x):
 return x.shape
pets.groupby('Kind')[['Age', 'OwnerID']]\
.agg(my_agg_func)

Age OwnerID

Kind

Cat	(31,)	(31,)
Dog	(57,)	(57,)
Parrot	(12,)	(12,)

the function passed into **.apply** takes in a DataFrame (all columns for each group)

def my_apply_func(x):
 return x.shape

pets.groupby('Kind')[['Age', 'OwnerID']]\
.apply(my_apply_func)

Groupby.agg vs Groupby.apply

The output:

function passed into .**agg** must return a **single value** per group

```
def my_agg_func(x):
    return x.mean() ← scalar

pets.groupby('Kind')[['Age', 'OwnerID']]\
.agg(my_agg_func)
```

	Age	OwnerID
Kind		
Cat	7.322581	5660.000000
Dog	6.789474	5119.824561
Parrot	6.583333	6936.666667

.apply is much more flexible: function passed into apply can output a single value, a Series, or a DataFrame.

```
def my_apply_func(x):
    return x.head(2) ← DataFrame with shape (2,2)
```

```
pets.groupby('Kind')[['Age', 'OwnerID']]\
.apply(my_apply_func)
```

		Age	OwnerID
Kind			
Cat	1	9	5508
	2	1	3086
Dog	0	11	5168
	4	13	4378
Parrot	3	2	7908
	5	11	7581

Groupby.agg vs Groupby.apply

.apply can do the everything that .agg can and more!

why would i use . agg then?

RUNTIME!

. agg is optimized to handle aggregation (Series to scalar operation) so it runs much faster than . apply!

conclusion:

use .agg for simple aggregation. only use .apply when doing complex operations that .agg cannot handle.

Groupby.filter

input:

- function passed into .filter must take in a **DataFrame**
- one DataFrame per group output:
 - function passed into .filter must return **a single boolean**
 - one boolean per group

result:

• keep only the rows belonging to the group that are True based on the filter function

def my_filter_func(x): return x['Age'].mean() < 7 single boolean</pre>

pets.groupby('Kind').filter(my_filter_func)

	PetID	Name	Kind	Gender	Age	OwnerID
0	J6-8562	Blackie	Dog	male	11	5168
3	R3-7551	Keller	Parrot	female	2	7908
4	P2-7342	Cuddles	Dog	male	13	4378
5	X0-8765	Vuitton	Parrot	female	11	7581
9	J2-3320	Heisenberg	Dog	male	3	1319
91	U6-4890	Blackie	Dog	male	6	1546
93	F1-1855	Bandit	Parrot	male	2	9604
94	Z8-4419	Scooter	Dog	male	3	4464
95	U8-6473	Biscuit	Dog	female	3	1070
99	S5-5938	Taz	Dog	male	6	9427

Groupby.transform

input:

- function passed into .transform must take in a **Series**
- one Series per column per group output:
- function passed into .transform must return the same size Series
 result:
 - the **same size DataFrame** as the original, with values transformed within each group

def my_transform_func(x): # calculate group-wise z-score for each column return (x - x.mean()) / x.std() does not change shape of x

pets.groupby('Kind')[['Age', 'OwnerID']].transform(my_transform_func)

	Age	OwnerID	
0	0.982026	0.019260	
1	0.373599	-0.055659	
2	-1.408181	-0.942540	
3	-1.299121	0.375419	
4	1.448488	-0.296578	
•••			
95	-0.883823	-1.619102	
96	-0.962736	0.615178	
97	-0.071846	1.364011	
98	1.487211	1.356687	
99	-0.184130	1.721990	sa
100 1	rows x 2 colu	imns	no

same size as before. no rows or columns lost.

pivot table

• grouping by two columns \rightarrow turning one group into columns

	date	name	food	weight
0	2023-01-01	Sam	Ribeye	0.20
1	2023-01-01	Sam	Pinto beans	0.10
2	2023-01-01	Lauren	Mung beans	0.25
3	2023-01-02	Lauren	Lima beans	0.30
4	2023-01-02	Sam	Sirloin	0.30

Find all the unique people who did not eat any food containing the word "beans".

def foo(x): return

df.groupby(_____).___(foo)['name'].unique()

DSC80 FA23 Midterm Question 1

	number	street	
hid			
1	7370	Torrey Pines Rd	Compute a DataFrame containing the proportion of 4-digit address numbers for each unique street in h .
2	960	Mission Blvd	def foo(x):
3	5490	La Jolla Village Dr	lengths = return (lengths == 4).mean()
4	5291	Gilman Dr	h.groupby()(foo)
5	5834	Torrey Pines Rd	

merging

LEFT			RIGHT		
со	l1_left co	l2_left	col	1_right	col2_righ
0	А	1	0	А	
1	А	2	1	В	
2	В	1	2	С	
3	С	1	3	С	
4	С	2	4	С	
5	D	1	5	E	

inner merge

- one row for each match
- does not include rows with no match


```
LEFT.merge(
    RIGHT,
    how='inner',
    left_on='col1_left',
    right_on='col1_right'
)
```

	col1_left	col2_left	col1_right	col2_right
0	А	1	А	1
1	А	2	А	1
2	В	1	В	1
3	С	1	С	1
4	С	1	С	2
5	С	1	С	3
6	С	2	С	1
7	С	2	С	2
8	С	2	С	3

left merge

- one row for each match
- includes **all rows of the left** df even if there is no match on the right df.
- unmatched rows are filled with np.nan


```
LEFT.merge(
    RIGHT,
    how='left',
    left_on='col1_left',
    right_on='col1_right'
)
```

col1_left col2_left col1_right col2_right

0	А	1	А	1.0
1	А	2	А	1.0
2	В	1	В	1.0
3	С	1	С	1.0
4	С	1	С	2.0
5	С	1	С	3.0
6	С	2	С	1.0
7	С	2	С	2.0
8	с	2	C	3.0
9	D	1	NaN	<mark>NaN</mark>

right merge

• same logic as left merge but all rows of the **right df** are kept regardless of whether there is a match in the left df.

```
LEFT.merge(
    RIGHT,
    how='right',
    left_on='col1_left',
    right_on='col1_right'
)
```


outer merge

- still one row per match
- unmatched rows from both dfs appear in the merged df.

```
LEFT.merge(
    RIGHT, how='outer',
    left_on='col1_left',
    right_on='col1_right'
```

col1_left col2_left col1_right col2_right

tasks:

clients:

	category	completed	minutes	urgency	client
0	work	False	NaN	2.0	NaN
1	work	False	NaN	1.0	NaN
2	work	True	13.5	2.0	NaN
3	work	False	NaN	1.0	NaN
4	relationship	True	5.3	NaN	NaN
			•••		
9831	consulting	True	71.7	2.0	San Diego Financial Analysts

	rate	active
n Diego Financial Analysts	55.00	True
ABC LLC	95.25	True
SDUSD	45.00	False
NASA	75.00	True
Grandma	1.00	False

Fill in the code below so that it produces a DataFrame which has all of the columns that appear in tasks, but with two additional columns, rate and activity, listing the pay rate for each task and whether the client being consulted for is still active. The number of rows in your resulting DataFrame should be equal to the number of rows in tasks for which the value in 'client' is in clients.

tasks.merge(clients	, how=,		
---------------------	---------	--	--

hypothesis & permutation tests

permutation test

unknown population

hypothesis test

known population

hypothesis test

I have a sample S. I also have a population P.

Question:

Does sample S look like it is drawn from population P?

permutation test

I have two samples: A and B. I don't know anything about the populations they come from.

Question:

Do samples A and B look like they are from the same distribution? In other words, do these samples look similar?

null and alternative hypotheses

null hypothesis 🤞

- must be an exact statement
- serves as your assumed ground truth when simulating empirical distribution
- e.g. <u>exactly 4%</u> of cookies from the store are burnt

alternative hypothesis 🤔

- what you suspect may be the case based on what you observe
- could be >, < or \neq
- e.g. <u>more than 4% of cookies from the store are burnt</u>

test statistics

- a single summary statistic
 - e.g. proportion of cookies burnt
- difference in means
 - mean_sampleA mean_sampleB
- absolute difference in means
 - | mean_sampleA mean_sampleB |
- TVD $\operatorname{TVD}(A,B) = rac{1}{2}\sum_{i=1}^k \left|a_i b_i
 ight|$
 - measures similarity between two categorical distributions
- K-S test statistic (Kolmogorov-Smirnov)
 - o scipy.stats.ks_2samp(A, B).statistic
 - measures similarity between two numerical distributions

putting everything together...

general workflow for hypothesis test:

- 1. decide on a test statistic.
- 2. compute test statistic for the the sample (this is your **observed test statistic**)
- 3. state null and alternative hypotheses
- 4. simulate test statistics based on null distribution
- 5. calculate p-value:

proportion of the simulated test statistics that are at least as extreme as the observed test statistic

general workflow for hypothesis test (using the cookies example from lab4):

- 1. test statistic: proportion of burnt cookies
- compute observed test statistic:
 proportion of burnt cookies you observe = 15/250 = 0.06
- 3. state hypotheses:
- 4. null: proportion of burnt cookies = 0.04 (supposed ground truth)
 alternative: proportion of burnt cookies > 0.04 (because i observed 0.06)
- 5. simulate test statistics based on null distribution
 np.random.multinomial(250, [0.96, 0.04], N)
 → assuming the store is telling the truth, i simulate N batches of 250 cookies
- 6. calculate p-value:

```
num_burnt = simulations[:, 1]
p-value = np.count_nonzero(num_burnt >= 15) / N
```

general workflow for permutation test:

- 1. decide on a test statistic.
- 2. compute test statistic for the the two samples (observed test statistic)
- 3. state null and alternative hypotheses
- 4. simulate test statistics by shuffling the labels
- 5. calculate p-value:

proportion of the simulated test statistics that are at least as extreme as the observed test statistic

general workflow for permutation test (using the skittles example from lab4):

1. test statistic:

TVD (comparing two categorical distributions)

2. compute test statistic:

TVD between color distribution of Waco and Yorkville

3. state null and alternative hypotheses

null: there is no difference between the two factories' color distributions **alternative:** there is a difference between the two factories' color distributions

4. simulate test statistics

```
sk['Factory'] = np.random.permutation(sk['Factory'])
```

simulated_tvds.append(tvd(dg))

→ repeat N times

5. calculate p-value: (np.array(simulated_tvds) >= observed).mean()

visualizing empirical distribution & p-value

The first few rows of the o DataFrame are shown below. For this problem, assume that some of the duration values are missing.

For each test, select the one correct procedure to simulate a single sample under the null hypothesis, and select all test statistics that can be used for the hypothesis test among the choices given.

	time	duration	hour	is_morning
oid				
1	2024-04-07 03:21:00	3	3	True
2	2024-04-20 16:35:00	70	16	False

Problem 5.1

Null Hypothesis: Every hour of the day (0, 1, 2, etc.) has an equal probability of having a power outage. Alternative Hypothesis: At least one hour is more prone to outages than others.

Simulation procedure:

- np.random.multinomial(100, [1/2] * 2)
 np.random.multinomial(100, [1/24] * 24)
 o['hour'].sample(100)
- O np.random.permutation(o['duration'])

Test statistic:

- Difference in means
- Absolute difference in means
- Total variation distance
- K-S test statistic

The first few rows of the o DataFrame are shown below. For this problem, assume that some of the duration values are missing.

For each test, select the one correct procedure to simulate a single sample under the null hypothesis, and select all test statistics that can be used for the hypothesis test among the choices given.

Pro	bl	em	5.	2
_			-	

Null: The proportion of outages that happen in the morning is the same for both recorded durations and missing durations. Alternative: The outages are more likely to happen in the morning for missing durations than for recorded durations.

Simulation procedure:

- O np.random.multinomial(100, [1/2] * 2)
- O np.random.multinomial(100, [1/24] * 24)
- o['hour'].sample(100)
- O np.random.permutation(o['duration'])

	time	duration	hour	is_morning
oid				
1	2024-04-07 03:21:00	3	3	True
2	2024-04-20 16:35:00	70	16	False

Test statistic:

- Difference in means
- Absolute difference in means
- Total variation distance
- K-S test statistic

The first few rows of the o DataFrame are shown below. For this problem, assume that some of the duration values are missing.

For each test, select the one correct procedure to simulate a single sample under the null hypothesis, and select all test statistics that can be used for the hypothesis test among the choices given.

	time	duration	hour	is_morning
oid				
1	2024-04-07 03:21:00	3	3	True
2	2024-04-20 16:35:00	70	16	False

Problem 5.3

Null: The distribution of hours is the same for both recorded durations and missing durations.

Alternative: The distribution of hours is different for recorded durations and missing durations.

Simulation procedure:

	np.random.multinomial(100,	[1/2]	* 2)
--	----------------------------	-------	------

- O np.random.multinomial(100, [1/24] * 24)
- o['hour'].sample(100)

```
O np.random.permutation(o['duration'])
```

Test statistic:

- Difference in means
- Absolute difference in means
- Total variation distance
- K-S test statistic

DSC80 SP24 Midterm Question 5

missingness & imputation

 $\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$

missingness mechanisms

• missing by design (MD)

when data is intentionally left out; you know exactly what a missing value in that column represents

• not missing at random (NMAR)

when the chance of a value being missing is dependent on the missing value itself

• missing at random (MAR)

when the chance of a value being missing is dependent on other columns

• missing completely at random (MCAR)

when the chance of a value being missing is completely due to chance

testing MAR of column X dependent on Y

permutation test

group A: X is missing group B: X is not missing

null:

the distribution of variable Y is the same

for group A and B

alternative:

the distribution of variable Y is different

for groups A and B

from <u>lecture 8</u>

At the Estancia La Jolla, the hotel manager enters information about each reservation in the DataFrame guests, after guests check into their rooms. Specifically, guests has the columns:

- "id" (str): The booking ID (e.g. "SN1459").
- "age" (int): The age of the primary occupant (the person who made the reservation).
- "people" (int): The total number of occupants.
- "is_business" (str): Whether or not the trip is a business trip for the primary occupant (possible values: "yes", "no", and "partially").
- "company" (str): The company that the primary occupant works for, if this is a business trip.
- "loyalty" (int): The loyalty number of the primary occupant. Note that most business travelers have a loyalty number.

Some of the values in guests are missing.

What is the most likely missingness mechanism of the "loyalty" column?

- A. Missing by design
- B. Missing at random
- C. Not missing at random
- D. Missing completely at random

At the Estancia La Jolla, the hotel manager enters information about each reservation in the DataFrame guests, after guests check into their rooms. Specifically, guests has the columns:

- "id" (str): The booking ID (e.g. "SN1459").
- "age" (int): The age of the primary occupant (the person who made the reservation).
- "people" (int): The total number of occupants.
- "is_business" (str): Whether or not the trip is a business trip for the primary occupant (possible values: "yes", "no", and "partially").
- "company" (str): The company that the primary occupant works for, if this is a business trip.
- "loyalty" (int): The loyalty number of the primary occupant. Note that most business travelers have a loyalty number.

Some of the values in guests are missing.

What is the most likely missingness mechanism of the "company" column?

- A. Missing by design
- B. Missing at random
- C. Not missing at random
- D. Missing completely at random

Fill in the blanks: To assess whether the missingness of "is_business" depends on "age", we should perform a $__(i)_$ with $__(ii)_$ as the test statistic.

- 1. What goes in blank (i)?
 - a. standard hypothesis test
 - b. permutation test
- 2. What goes in blank (ii)?
 - a. the total variation distance
 - b. the sample mean
 - c. the (absolute) difference in means
 - d. the K-S statistic
 - e. either the (absolute) difference in means or the K-S statistic, depending on the shapes of the observed distributions

imputation

• Imputation with a single value: e.g. mean, median, mode

mean imputation - fill in missing values with the mean of that column pros: preserves the mean of the observed data cons: decreases the variance of the data;

creates a biased estimate of the true mean if the data are not MCAR

 \rightarrow within-group (conditional) mean imputation

using different mean for each group of the column missingness is dependent on

• **Probabilistic imputation -** fill in missing values by drawing from the distribution of the non-missing data

pros: preserves the original data's distribution

cons: random each time (best to do multiple imputations and aggregate the results)

Doris wants to use multiple imputation to fill in the missing values in 'WeightAlt'. She knows that 'WeightAlt' is MAR conditional on 'BCS' and 'Age', so she will perform multiple imputation conditional on 'BCS' and 'Age' - each missing value will be filled in with values from a random 'WeightAlt' value from a donkey with the same 'BCS' and 'Age'. Assume that all 'BCS' and 'Age' combinations have observed WegihtAlt values. Fill in the blanks in the code below to estimate the median of 'WeightAlt' using multiple imputation conditional on 'BCS' and 'Age' with 100 repetitions. A function impute is also partially filled in for you, and you should use it in your answer.

questions?

good luck tomorrow!

CREDITS: This presentation template was created by **<u>Slidesgo</u>**, and includes icons by **<u>Flaticon</u>**, and infographics & images by **<u>Freepik</u>**

Please keep this slide for attribution

