N

DSC 80 winter 2025
midterm review

TA: Mizuho Fukuda
Tutors: Gabriel Chag, Ylesia Wu

midterm logistics

tuesday, 2/11in class

11:00 am - 12:20 pm in SOLIS 104

see sedting chart here

80 minutes paper exam

1 sheet of hand-written notes (front + back)
lectures 1-8 (no HTML)

https://docs.google.com/spreadsheets/d/1hRbWb69Lg6uuCsu5Zr9wXCo2wa_X8KSVPDJK47_73tE/edit?gid=1135995585#gid=1135995585

y

01

02

06

table of contents
numpy[pandas 0 4 hypothesis &
basics permutation tests
. missinghess &
aggregating 05 imputation
merging 06 questions

numpy and pandas
basics

numpy basics

numpy supports vectorized operations (quicker than a loop)

/' methods to note

e np.arange(start, stop, step)

e np.random.choice(a, size, replace, p)
e np.random.multinomial(n, pvals, size)

e np.random.permutation(x)

pandas basics

7 .locwvs. .iloc

.loc: access a group of rows and columns

by labels or boolean arrays

— heroes.loc[‘A-Bomb’,

‘Gender’]

.1loc: access rows and columns by

integer-location-based indexing.

— heroes.iloc[09, 0]

dataframe: heroes

name
A-Bomb

Abe Sapien
Abin Sur
Abomination

Abraxas

Yellowjacket Il
Ymir

Yoda

Zatanna

Zoom

734 rows x 3 columns

Gender Eye color
Male yellow
Male blue
Male blue
Male green
Male blue

Female blue
Male white
Male brown

Female blue
Male red

Race

Human
Icthyo Sapien

Ungaran

Human / Radiation

Cosmic Entity

Human
Frost Giant
Yoda's species

Human

pandas basics

query: a special case of . 1loc

e.g. get all the heroes with blue eyes

heroes.loc[heroes[‘Eye color’] == ‘blue’]
1\ J
Y
heroes['Eye color'] == 'blue’
0 False
1 True
2 True
3 False
4 True
729 .+;ue
730 False
731 False
732 True
733 False

pandas basics

query: a special case of . 1loc

e.g. get all the heroes with blue eyes
heroes.loc[{True, False, True, .., False, False}]

— d subset of heroes with only rows that are True

name Gender Eye color Race

1 Abe Sapien Male blue Icthyo Sapien
Abin Sur Male blue Ungaran

Abraxas Male blue Cosmic Entity

a A~ N

Absorbing Man Male blue Human

pandas basics

query: a special case of . 1loc

e.g. get all the heroes with blue eyes

heroes.loc[heroes[‘Eye color’] == ‘blue’]

heroes[[heroes[‘Eye color’'] == ‘blue’]]

pandas basics

query: a special case of . 1loc

get all the heroes with blue eyes and blond hair:

heroes.loc[(heroes[‘Eye color’] == ‘blue’) & (heroes[‘Hair color’] == ‘blond’)]

get all the heroes with blue eyes or blond hair:

heroes.loc| (heroes[‘Eye color’] == ‘blue’) | (heroes[‘Hair color’] == ‘blond’)]

e ‘'&'isfor ‘and’

])

° is for ‘or

lll

pandas basics

/'more pandas methods

e df.sort_values(‘column’or [‘col1l’, ‘col2’], ascending=True)
e df.set_index(‘column’)

e df[‘col’] — Series; df[[‘col1’, ..., 'col2’]] — sub DataFrame

e df.index — index object (not a python list)

e ser.unique() — numpy array

e ser.nunique() —int

e ser.value_counts() — Series (index: unique values, values: counts)
e ser.idxmax()

e ser.astype(some type)

pandas basics

some Series)

e df.assign(column_name
not in quotes

— not in place; creates a copy of the df

e df[‘column_name’] = some Series

— modifies the original df

pandas basics

e .str accessor: allows you to use string methods
o df['str_col'].str.lower()
o df['str_col'].str.strip().str.replace(’,’, ‘')

e .dt accessor: allows you to use datetime methods
o df['date_col'].dt.day
o df['date_col'].dt.dayofweek

aggregating

definition of aggregation

In pandas, aggregation refers to the process of applying a function to summarize or

compute a single result from a set of values in a Series or grouped DataFrame.

PetID Name Kind Gender Age OwnerlD
Kind

{’c_at_ 1 'Q0-2001 Roomba Cat male 9 5508\
| 2 MO0-2904 Simba Cat male 1 3086 :
1 6 Z4-5652 Priya Cat female 7 7343 |
: 7 Z4-4045 Simba Cat male 0 2700 :
\ 8 M8-7852 Cookie Cat female 8 7606 »

TDos 0 Josse2 Blackie Dog male 1 5168

4 P2-7342 Cuddles Dog male 13 4378

9 J2-3320 Heisenberg Dog male 3 1319

11 U4-9376 Scout Dog female 2 7846

12 H8-1429 Lily Dog female 3 7846

Parrot 3 R3-7551 Keller Parrot female 2 7908

5 X0-8765 Vuitton Parrot female 1 7581

16 H8-8856 Bandit Parrot male " 6102

19 QO0-3593 Oakley Parrot female 4 4989

20 08-2501 Bandit Parrot male 5 1899

PetID

Gender

OwnerlD

Dog some value

Parrot some value

some value

some value

some value

some value

some value

some value

some value

some value

some value

some value

simpson’s paradox

/'simpson’s paradox is a result of weighted averages

unit price of each product at each store:

store A store B if each store sold 1 unit of each item:

Average Revenue of Store A (R_a)=
product (1(1) +1(5) +1(20)) / 3 = 8.667

X 1 < 3 Average Revenue of Store B (R_b)=
(1(3) +1(7) +1(30)) / 3=13.333

As expected, R_a < R_b. — no paradox

simpson’s paradox

/'simpson’s paradox is a result of weighted averages

unit price of each product at each store:

now let’'s say:
store A storeB store A sells a lot of product Z

and store B sells a lot of product X

product
Average Revenue of Store A (R_a)=
X 1 - 3 (1(1) +1(5) +20(20)) [22 =18.455
Y 5 - 7 Average Revenue of Store B (R_b)=

(20(3) +1(7) +1(30)) [/ 22 = 4.409
R_a > R_b — simpson’s paradox

For this question, we'll continue using the df and foods tables form Question 1. Dyaln and Giorgia
want to compare their CO9 emissions. They added a new column called 'bean' to df that
contains True if the food was a bean (e.g. “Pinto beans”) and False otherwise. Then, they
compute the following pivot table:

Dylan's co2/kg Giorgia's co2/kg

bean=True 5 10

bean=False 50 80

Each entry in the pivot table is the average CO, emissions for Dylan and Giorgia per kg of food
they ate (CO3/kg) for both bean and non-bean foods.

Suppose that overall, Dylan produced an average of 41 COy/kg of food he ate, while Giorgia produced
an average of 38 CO9/kg.

Problem 2.2

Dylan and Giorgia want to figure out exactly when Simpson's paradox occurs for their data.
Suppose that 0.2 proportion of Dylan's food was bean foods. What range of proportions for
Giorgia's bean food would cause Simpson'’s paradox to occur? Show your work in the space below,
then write your final answer in the blanks at the bottom of the page. Your final answers should
be between 0 and 1. Leave your answers as simplified fractions.

Between and

DSC80 FA23 Midterm Question 2

https://practice.dsc80.com/fa23-midterm/index.html

Dylan's co2/kg Giorgia's co2/kg

bean=True 5 10

bean=False 50 80

remember, simpson’s paradox is a result of weighted averages!

DSC80 FA23 Midterm Question 2

https://practice.dsc80.com/fa23-midterm/index.html

Groupby.agg

Kind

Cat

Dog

Parrot

—

© h~A O 00 N O N

12

16
19
20

PetiD

Q0-2001
M0-2904
Z4-5652
Z4-4045
M8-7852
J6-8562
P2-7342
J2-3320
U4-9376
H8-1429
R3-7551
X0-8765
H8-8856
QO0-3593
08-2501

Name

Roomba
Simba
Priya
Simba
Cookie
Blackie
Cuddles
Heisenberg
Scout
Lily
Keller
Vuitton
Bandit
Oakley

Bandit

Kind

Cat
Cat
Cat
Cat
Cat
Dog
Dog
Dog
Dog
Dog
Parrot
Parrot
Parrot
Parrot

Parrot

Gender Age OwneriD
input

male
male
female
male
female
male
male
male
female
female
female
female
male
female

male

= ™ T ™

9
1

"

1

aggregate functions are applied to
each column of each group
— outputs a single value per column per group

5508
3086
7343 -
2700 pets.groupby('Kind') [['Age']].mean(
7606 Age
5168
Kind

4378

r _____ Y
1319 Cat 1 7.322581 ,I output
7848 Dog 6.789474
7846
7908 Parrot 6.583333
7581
6102 functions like .mean() or .count() are built in agg functions.
4989 this is the same thing as doing .agg(mean)
1899

Groupby.agg

PetID Name Kind Gender Age OwnerlD
Kind input custom agg functions for more complex operations
Cat 1 QO0-2001 Roomba Cat male ,’_9_: 5508
2 M0-2904 Simba Cat male | 1 | 3086
6 Z4-5652 Priya Cat female : 7 : 7343 def my_agg_func(x) .
7 Z4-4045 Simba Cat male I 0 | 2700 return x.sum() / Xx.shapel0]
8 M8-7852 Cookie Cat female :_S_JI 7606
Dog O J6-8562 Blackie Dog male 11 5168 pets.groupby('Kind') [['Age']].agg(my_agg_func)
4 P2-7342 Cuddles Dog male 13 4378 Age
9 J2-3320 Heisenberg Dog male 3 1319
11 U4-9376 Scout Dog female 2 7846 Kind PR .
12 H8-1429 Lily Dog female 3 7846 Cat : 7.322581 : output
Parrot 3 R3-7551 Keller Parrot female 2 7908 Dog 6.789474
5 X0-8765 Vuitton Parrot female 1 7581
16 H8-8856 Bandit Parrot male 1" 6102 Parrot 6.583333
19 QO0-3593 Oakley Parrot female 4 4989

20 08-2501 Bandit Parrot male 5) 1899

Groupby.agg vs Groupby.apply

The input:

function passed into .agg takes in a Series
(each column of the original df for each group)

def my_agg_func(x):
return x.shape

pets.groupby('Kind') [['Age', 'OwnerID']]\
.agg(my_agg_func)

Kind
Cat
Dog

Parrot

Age OwneriD

(31) (31)

(57) (57)

(12,) (12,)

the function passed into .apply takes in a
DatafFrame (all columns for each group)

def my_apply_func(x):
return x.shape

pets.groupby('Kind') [['Age', 'OwnerID']]\
.apply(my_apply_func)

Kind
Cat (31; 2)
Dog (57, 2)

Parrot (12; 2)
dtype: object

Groupby.agg vs Groupby.apply

The output:

_ _ .apply is much more flexible:
function passed into .agg must return function passed into apply can output a single
a single value per group value, a Series, or a DataFrame.

def my_apply_func(x):

def my_agg_func(x): return x.head(2) — DataFrame with shape (2,2)

return x.mean() < scalar
pets.groupby('Kind') [['Age', 'OwnerID']I\
pets.groupby('Kind') [['Age', 'OwnerID']]\ -apply(my_apply_func)

.agg(my_agg_func) Age OwneriD

Age OwnerID Kind
Kind Cat 1] 5508
2 1 3086
Cat 7.322581 5660.000000

Dog O 11 5168

Dog 6.789474 5119.824561 a 13 4378
Parrot 6.583333 6936.666667 Parrot 3 2 7908
5 11 7581

Groupby.agg vs Groupby.apply

.apply can do the everything that .agg can and more!
why would i use .agg then?

RUNTIME!

.agg is optimized to handle aggregation (Series to scalar operation)
so it runs much faster than .apply!

conclusion:

use .agg for simple aggregation. only use .apply when doing complex
operations that . agg cannot handle.

Groupby filter

input:
e function passed into .filter must
take in a DataFrame
e one DataFrame per group
output:
e function passed into .filter must
return a single boolean
e ohe boolean per group
result:
e keep only the rows belonging to the
group that are True based on the filter
function

def my_filter_func(x):
return x['Age'].mean() < 7]single boolean

pets.groupby('Kind').filter(my_filter_func)

PetID Name Kind Gender Age OwneriD

0 J6-8562 Blackie Dog male 11 5168
3 R3-7551 Keller Parrot female 2 7908
4 P2-7342 Cuddles Dog male 13 4378
5 X0-8765 Vuitton Parrot female 1 7581
9 J2-3320 Heisenberg Dog male 3 1319
91 U6-4890 Blackie Dog male 6 1546
93 F1-1855 Bandit Parrot male 2 9604
94 Z78-4419 Scooter Dog male 3 4464
95 U8-6473 Biscuit Dog female 3 1070
99 S5-5938 Taz Dog male 6 9427

Grou pbyotra nSform def my_transform_func(x):

calculate group-wise z-score for each column
return[(x - x.mean()) / X-Std()] does not change shape of x

input: pets.groupby('Kind') [['Age', 'OwnerID']].transform(my_transform_func)
e function passed into . transform must Age OwnerID
take in a Series 0 0982026 0.019260
e one Series per column per group 1 0373509 -0.055659
output: 2 -1.408181 -0.942540

e function passed into . transform must
return the same size Series
result:
e the same size DataFrame as the
original, with values transformed
within each group

-1.299121 0.375419

W

1.448488 -0.296578

95 -0.883823 -1.619102
96 -0.962736 0.615178
97 -0.071846 1.364011
98 1487211 1.356687

99 -0.184130 1.721990 X
same size as before.

100 rows x 2 columns no rows or columns lost.

pivot table

grouping by two columns — turning one group into columns

pets.groupby(['Kind',

Kind

Cat

Dog

Parrot

Gendgr
female
male
female
male

female

|
male

Age
pivot
7.250000
7.368421
5.909091
7.342857
6.714286
6.400000

'Gender']) [['Age']].mean()

pets.pivot_table(
index='Kind',

columns="'Gender"',

values="'Age',

aggfunc="mean'

)

Gender [female

Kind
Cat
Dog

Parrot

male |

7.250000 7.368421

5.909091

7.342857

6.714286 6.400000

date name food weight

0 2023-01-01 Sam Ribeye 0.20
1 2023-01-01 Sam Pinto beans 0.10
2023-01-01 Lauren Mung beans 0.25
2023-01-02 Lauren Lima beans 0.30

& WON

2023-01-02 Sam Sirloin 0.30

Find all the unique people who did not eat any food containing the word “beans”.

def foo(x):
return

df.groupby(). (foo)['name’].unique()

DSC80 FA23 Midterm Question 1

https://practice.dsc80.com/fa23-midterm/index.html

number street

hid

Compute a DataFrame containing the proportion of 4-digit

1 7370 Torrey Pines Rd address numbers for each unique street in h.

2 960 Mission Blvd def foo(x):
. lengths = ___
3 5490 La Jolla Village Dr return (lengths == 4).mean()
4 5291 Gilman Dr h.groupby(). (foo)
5 5834 Torrey Pines Rd

DSC80 SP24 Midterm Question 1

https://practice.dsc80.com/sp24-midterm/index.html

merging

merging

LEFT

a A W N

coll_left col2_left

A

o O O m >

1
2

RIGHT

coll_right col2_right

0 A 1
1 B 1
2 C 1
3 C 2
4 C 3
5 E 1

inner merge LEFT.merge(

RIGHT,

how='inner"',
left_on='coll_left’,
right_on='coll_right'

e one row for each match
e does notinclude rows with no match

LEET RIGHT coll_left col2_left col1_right col2_right
coll_left col2_left col1_right col2_right 0 A 1 A 1
0 A 1 ——0 A 1 1 A 2 A 1
1 A 2 ?1 B 1 — B 1 B 1
2 ° ! 2 ¢ ! 3 c 1 c 1
3 c 1 € 2
4 C 1 C 2
4 ¢ 2 s 3
T T T T T T T T T e e e e e e e e o o e
LE____D____'LI |r5 . 1\| 5 (& 1 C 3
\ ‘7 """ - 6 c 2 c 1
do not appear in merged df because there is 7 c 2 c 2
not matching value in the other df. 8 C 2 C 3

Ieft merae LEFT.merge(
g RIGHT,
how="'1left',
e one row for each match left_on='coll_left’',
e includes all rows of the left df even if there is no right_on='coll_right'
match on the right df.)

e unmatched rows are filled with np.nan
coll_left col2_left coll_right col2_right

TEET RIGHT 0 A 1 A 1.0

col1_left col2_left coll_right col2_right . 2 : - B
5 - : 3 A 1 2 B 1 B 1.0
1 A 5 __— 1 5 : | 3 c 1 c 1.0
. - 1 — ” " 1 4 E 1 C 2.0
3 € 1 C 2 5 € 1 c 3.0
a c 2 C 3 6 (5 2 c 1.0
5 D1, 5 E 1 7 c 2 c 2.0

8 c c

appears in merged df

e LEFT.merge(
right merge RIGHT,
how='right’,
e same logic as left merge but all rows of the right df left_on='coll_left',
are kept regardless of whether there is a match in the right_on='coll_right"
left df.)

coll_left col2_left coll_right col2_right

e RIGHT 0 A 1.0 A 1
coll_left col2_left coll_right col2_right 1 A 2.0 A 1

0 A 1 ——0 A 1 2 B 1.0 B 1
1 A 2 / 1 B 1 - 3 c 1.0 C 1
2 B 1 — 2 c 1 a4 ¢ 2.0 c 1
2 g ! c 2 5 c 1.0 c 2
4 ¢ FE=—— @ & 6 C 2.0 c 2
L £ AL S 7 e 10 ¢ .
\ 8 C 2.0 C 3

appears in merged df f _9_ o -N;N- o _Ja; T -E _____ 1 i
|

LEFT.merge(

outer merge RIGHT, how='outer',
left_on='coll_left’,
e stillone row per match right_on='coll_right'

e unmatched rows from both dfs appear in the merged df.)

coll_left col2_left coll_right col2_right

0 A 1.0 A 1.0
LEFT RIGT 1 A 2.0 A 1.0
coll_left col2_left col1_right col2_right 2 B 1.0 B 1.0
0 A 1 70 A 1) 3 e 1.0 € 1.0
1 . : /1 B ! 4 c 1.0 g 2.0
2 B 1
2 c ! 5 c 1.0 c 3.0
3 c 1 C 2
6 c 2.0 c 1.0
4 C 2 (82 3
——————————— fmmmmmmmm—mm 7 @ 2.0 C 2.0
5 D 1 | 5 E 1 "
_________________________ 8 C 2.0 C 3.0
e __
_ | 9 D 1.0 NaN NaN |
both appear in merged df (e e T T T e e

tasks:
category completed minutes urgency client
0 work False NaN 2.0 NaN
1 work False NaN 1.0 NaN
2 work True 135 2.0 NaN
3 work False NaN 1.0 NaN
4 relationship True 5.3 NaN NaN
9831 consulting True M7 2.0 San Diego Financial Analysts

clients:

rate active

San Diego Financial Analysts
ABC LLC

SDUSD

NASA

Grandma

55.00 True
95.25 True
45.00 False
75.00 True

1.00 False

Fill in the code below so that it produces a DataFrame which has all of the columns that
appear in tasks, but with two additional columns, rate and activity, listing the pay rate for each
task and whether the client being consulted for is still active. The number of rows in your
resulting DataFrame should be equal to the number of rows in tasks for which the value in

‘client’is in clients.

tasks.merge(clients, how=

DSC80 SP22 Midterm Question 9

https://practice.dsc80.com/fa22-midterm/index.html

hypothesis &
permutation tests

hypothesis test

known population

S B
e o u & o
L O
® e 2 2
R NN

?
sampleﬁ?f;f

permutation test

unknown population

?9?
EREERE BN

sample A sample B

hypothesis test

| have a sample S.
| also have a population P.

Question:
Does sample S look like it is drawn
from population P?

permutation test

| have two samples: A and B.
| don’t know anything about the
populations they come from.

Question:

Do samples A and B look like they are from
the same distribution? In other words, do
these samples look similar?

null and alternative hypotheses

null hypothesis ¢
e must be an exact statement
e serves ds your assumed ground truth when simulating empirical
distribution
e e.g.exactly 4% of cookies from the store are burnt

alternative hypothesis&:
e what you suspect may be the case based on what you observe
e couldbe> <orz
e e.g.more than 4% of cookies from the store are burnt

test statistics

e a single summary statistic
o e.g.proportion of cookies burnt
e difference in means
o mean_sampleA - mean_sampleB
e absolute difference in means
o | mean_sampleA - mean_sampleB |
e TVD

k
TVD(4, B) = % D |ai — b
i=1

o measures similarity between two categorical distributions
e K-S test statistic (Kolmogorov-Smirnov)

o scipy.stats.ks_2samp(A, B).statistic

o measures similarity between two numerical distributions

putting everything together...

general workflow for hypothesis test:

—
.

decide on a test statistic.
compute test statistic for the the sample (this is your observed test statistic)
state null and alternative hypotheses

simulate test statistics based on null distribution

a &~ W BN

cdlculate p-value:
proportion of the simulated test statistics that are at least as extreme as the

observed test statistic

general workflow for hypothesis test (using the cookies example from lab4):

1.

w

test statistic:

proportion of burnt cookies

compute observed test statistic:

proportion of burnt cookies you observe = 15/250 = 0.06

state hypotheses:

null: proportion of burnt cookies = 0.04 (supposed ground truth)
alternative: proportion of burnt cookies > 0.04 (because i observed 0.06)
simulate test statistics based on null distribution
np.random.multinomial(250, [0.96, ©.04], N)

— assuming the store is telling the truth, i simulate N batches of 250 cookies
cdlculate p-value:

num_burnt = simulations[:, 1]

p-value = np.count_nonzero(num_burnt >= 15) / N

general workflow for permutation test:

—
.

decide on a test statistic.
compute test statistic for the the two samples (observed test statistic)
state null and alternative hypotheses

simulate test statistics by shuffling the labels

a &~ W BN

cdlculate p-value:
proportion of the simulated test statistics that are at least as extreme as the

observed test statistic

general workflow for permutation test (using the skittles example from lab4):

.

test statistic:

TVD (comparing two categorical distributions)

compute test statistic:

TVD between color distribution of Waco and Yorkville

state null and alternative hypotheses

null: there is no difference between the two factories’ color distributions
alternative: there is a difference between the two factories’ color distributions
simulate test statistics

sk['Factory'] = np.random.permutation(sk['Factory'])
simulated_tvds.append(tvd(dg))

— repeat N times

calculate p-value: (np.array(simulated_tvds) >= observed).mean()

visualizing empirical distribution & p-value

observed

150

100
F=
C
- |
o
o

50

g 5 10 15 20

\ J
burnt cookies out of 250 v

p-value

The first few rows of the o DataFrame are shown
below. For this problem, assume that some of
the duration values are missing.

For each test, select the one correct procedure
to simulate a single sample under the null
hypothesis, and select all test statistics that can
be used for the hypothesis test among the
choices given.

time duration hour is_morning

oid
1 2024-04-07 03:21:00 3 3 True
2 2024-04-20 16:35:00 70 16 False

Problem 5.1

Null Hypothesis: Every hour of the day (0, 1, 2, etc.) has an equal probability of having a power outage.
Alternative Hypothesis: At least one hour is more prone to outages than others.
Simulation procedure:
np.random.multinomial(100, [1/2] * 2)
np.random.multinomial(100, [1/24] * 24)
o['hour'].sample(100)
np.random.permutation(o['duration'])
Test statistic:
Difference in means
Absolute difference in means
Total variation distance

K-S test statistic

DSC80 SP24 Midterm Question b

https://practice.dsc80.com/sp24-midterm/index.html

The first few rows of the o DataFrame are shown Problem 5.2

below. For this problem, assume that some of Qe ’

the duration ValueS are miSSing Null: The proportion of outages that happen in the morning is the same for both recorded durations and missing durations.
Alternative: The outages are more likely to happen in the morning for missing durations than for recorded durations.

For each test, select the one correct procedure sirmalation Brocadie:

to simulate a single sample under the null

hypothesis, and select all test statistics that can

be used for lthe hypothesis test among the np.random.multinomial(l@@, [1/24] x 24)

choices given. ol'hour'].sample(100)

np.random.multinomial(100, [1/2] * 2)

np. random.permutation(o['duration'])

g . . . Test statistic:
time duration hour is_morning
Difference in means

oid . .
Absolute difference in means
1 2024‘04'07 03.21 :OO 3 3 Tl'ue Total variation distance
2 2024-04-20 16:35:00 70 16 False K-S test statistic

DSC80 SP24 Midterm Question b

https://practice.dsc80.com/sp24-midterm/index.html

The first few rows of the o DataFrame are shown
below. For this problem, assume that some of
the duration values are missing.

For each test, select the one correct procedure
to simulate a single sample under the null
hypothesis, and select all test statistics that can
be used for the hypothesis test among the
choices given.

time duration hour is_morning

oid
1 2024-04-07 03:21:00 3 3 True
2 2024-04-20 16:35:00 70 16 False

Problem 5.3

Null: The distribution of hours is the same for both recorded durations and missing durations.
Alternative: The distribution of hours is different for recorded durations and missing durations.
Simulation procedure:
np.random.multinomial(100, [1/2] * 2)
np.random.multinomial(100, [1/24] * 24)
o['hour'].sample(100)
np.random.permutation(o['duration'])
Test statistic:
Difference in means
Absolute difference in means
Total variation distance

K-S test statistic

DSC80 SP24 Midterm Question b

https://practice.dsc80.com/sp24-midterm/index.html

missingnhess &
imputation

missingness mechanisms

e missing by design (MD)
when data is intentionally left out; you know exactly what a missing value in
that column represents

e not missing at random (NMAR)
when the chance of a value being missing is dependent on the missing value
itself

e missing atrandom (MAR)
when the chance of a value being missing is dependent on other columns

e missing completely at random (MCAR)

when the chance of a value being missing is completely due to chance

testing MAR of column X dependenton Y

permutation test
group A: X is missing

group B: X is not missing

null:

the distribution of variable Y is the same
for group A and B

alternative:

the distribution of variable Y is different

for groups A and B

Father's Height by Missingness of Child Height (MAR example)

False
True

0.1+

0.05

T T T
65 70 75
father

from lecture 8

https://dsc80.com/resources/lectures/lec08/lec08.html

At the Estancia La Jolla, the hotel manager enters information about each reservation in the DataFrame guests,
after guests check into their rooms. Specifically, guests has the columns:

"id" (str): The booking ID (e.g. "SN1459").

"age" (int): The age of the primary occupant (the person who made the reservation).

"people” (int) : The total number of occupants.

"is_business" (str): Whether or not the trip is a business trip for the primary occupant (possible values:
‘yes", "no",and "partially").

"company" (str): The company that the primary occupant works for, if this is a business trip.

"loyalty" (int) : The loyalty number of the primary occupant. Note that most business travelers have a
loyalty number.

Some of the values in guests are missing.

What is the most likely missingness mechanism of the "loyalty" column?

A. Missing by design

Missing at random

Not missing at random
Missing completely at random

O 0Ow

DSC80 WI24 Final Question 2

https://practice.dsc80.com/wi24-final/index.html

At the Estancia La Jolla, the hotel manager enters information about each reservation in the DataFrame guests,
after guests check into their rooms. Specifically, guests has the columns:

"id" (str): The booking ID (e.g. "SN1459").

"age" (int): The age of the primary occupant (the person who made the reservation).

"people” (int) : The total number of occupants.

"is_business" (str): Whether or not the trip is a business trip for the primary occupant (possible values:
‘yes", "no",and "partially").

"company" (str): The company that the primary occupant works for, if this is a business trip.

"loyalty" (int) : The loyalty number of the primary occupant. Note that most business travelers have a
loyalty number.

Some of the values in guests are missing.

What is the most likely missingness mechanism of the "company" column?

A. Missing by design

Missing at random

Not missing at random
Missing completely at random

O 0Ow

DSC80 WI24 Final Question 2

https://practice.dsc80.com/wi24-final/index.html

Fill in the blanks: To assess whether the missingness of "is_business" depends on "age", we
should performa __(1i)__ with __(ii)__ as the test statistic.

1. What goes in blank (i)?
a. standard hypothesis test
b. permutation test

2. What goes in blank (ii)?

the total variation distance

the sample mean

the (absolute) difference in means

the K-S statistic

either the (absolute) difference in means or the K-S statistic, depending on the shapes of
the observed distributions

Q0 0O

DSC80 WI24 Final Question 2

https://practice.dsc80.com/wi24-final/index.html

imputation

Imputation with a single value: e.g. mean, median, mode

mean imputation - fill in missing values with the mean of that column

pros: preserves the mean of the observed data

cons: decreases the variance of the data;

creates a biased estimate of the true mean if the data are not MCAR

— within-group (conditional) mean imputation

using different mean for each group of the column missingness is dependent on
Probabilistic imputation - fill in missing values by drawing from the distribution of the
non-missing data
pros: preserves the original data’s distribution

cons: random each time (best to do multiple imputations and aggregate the results)

Doris wants to use multiple imputation to fill in the missing values in 'WeightAlt'. She knows that 'WeightAlt' is
MAR conditional on 'BCS"' and 'Age ', so she will perform multiple imputation conditional on 'BCS" and 'Age' - each
missing value will be filled in with values from a random 'WeightAlt" value from a donkey with the same 'BCS' and
"Age'. Assumethatall 'BCS' and 'Age' combinations have observed WegihtAlt values. Fill in the blanks in the code
below to estimate the median of 'WeightAlt' using multiple imputation conditional on 'BCS' and 'Age " with 100
repetitions. A function impute is also partially filled in for you, and you should use it in your answer.

def impute(col):
col = col.copy()

donkeys DataFrame:

id BCS Age Weight WeightAlt

n =
fill = np.random.choice(
col[] = fill
return col

results =[]

foriinrange(_____):
imputed = (donkeys. (

0 do1 3.0 <2 77

1 do2 25 <2 100

2 do3 1.5 <2 74
)['WeightAlt].

results.append(imputed.median())

NaN
NaN

NaN

id A unique identifier for each donkey (do1, de2,
etc.).
BCS Body condition score: from 1 (emaciated) to 3
(healthy) to 5 (obese) in increments of 0.5.
Age Age in years: <2, 2-5, 5-10, 10-15, 15-20, and
over 20 years.
Weight Weight in kilograms.
WeightAlt Second weight measurement taken for 30 don-
keys. NaN if the donkey was not reweighed.

()

DSC80 FA23 Midterm Question 4

https://practice.dsc80.com/fa23-midterm/index.html

questions?

good luck
tomorrow!

CREDITS: This presentation template was created by
Slidesgo, and includes icons by Elaticon, and
infographics & images by Freepik

Please keep this slide for attribution

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

