DSC 80 Discussion 8 Worksheet

1 FA22 Final Problem 7

group color x vy Consider the dataframe to the left. Suppose you wish
to use this data in a linear regression model. To do
Y A red 3 2 0, the color column must be encoded numerically.
1 B green 7 1
Problem 1.1. True or False: a meaningful way to
2 A blue 2 5 numerically encode the color column is to replace
each string by its index in the alphabetic ordering of
3 A red 5 3 .
the colors. That is, to replace blue by 1, green by
4 B blue 10 4 2, and red by 3.
5 A green 1 1 [1 True

% False

Note that color is a nominal categorical varaible, meaning that there is no inherent ordering to the categories. Thus encoding
the color variables by 1, 2, and 3 doesn’t make any meaningful sense. l.e. it doesn’t make sense to think of the color “red” as
being “greater” than the color “blue” in any meaningful way.

Problem 1.2. scikit-learn’s OneHotEncoder module has a keyword called drop=first, which the docu-
mentation says will ”drop the first category in each feature.” What’s the purpose of this keyword, and will
using it lead to a worse linear classifier?

The purpose of drop='first' is to avoid perfectly collinear features, which can cause numerical problems in some models like
unregularized linear regression. When you one-hot encode a categorical variable, all the columns sum to 1, creating redundancy.
Dropping one category removes this redundancy.

Whether this leads to a worse classifier depends on the model type. For unregularized models, dropping a category helps and
doesn't hurt performance. However, for penalized models (like regularized regression), dropping a category can introduce bias and
may lead to slightly worse performance. The documentation notes that dropping "breaks the symmetry" of the encoding, which can
affect models that use regularization.

Justin Eldridge

Nigel Doering
Note that color is a nominal categorical varaible, meaning that there is no inherent ordering to the categories. Thus encoding the color variables by 1, 2, and 3 doesn’t make any meaningful sense. I.e. it doesn’t make sense to think of the color “red” as being “greater” than the color “blue” in any meaningful way.

Nigel Doering
The purpose of drop='first' is to avoid perfectly collinear features, which can cause numerical problems in some models like unregularized linear regression. When you one-hot encode a categorical variable, all the columns sum to 1, creating redundancy. Dropping one category removes this redundancy.
Whether this leads to a worse classifier depends on the model type. For unregularized models, dropping a category helps and doesn't hurt performance. However, for penalized models (like regularized regression), dropping a category can introduce bias and may lead to slightly worse performance. The documentation notes that dropping "breaks the symmetry" of the encoding, which can affect models that use regularization.

Nigel Doering

Nigel Doering

2 FA22 Final Problem 8

Problem 2.1. Suppose you split a data set into a training set and a test set. You train a classifier on the
training set and test it on the test set. True or False: the training accuracy must be higher than the test

accuracy.
[1] True)Q False

Training accuracy does NOT have to be higher than test accuracy, though we typically expect it to be. While models
are optimized on the training data (which usually leads to higher training accuracy), it's entirely possible for test
accuracy to exceed training accuracy due to random variation in how the data was spilit.

For example, the test set might happen to contain easier-to-classify examples, or the training set might contain more
difficult or noisy examples. This is especially likely with small datasets or particular random splits. The word "must" in
the question is the key—there's no guarantee that training accuracy will always be higher, only that we generally
expect it to be higher on average across many random splits.

Problem 2.2. Suppose you train a model, but achieve much lower training and test accuracies than you
expect. When you look at the data and make predictions yourself, you are easily able to achieve higher train
and test accuracies. What should be done to improve the performance of the model?

Note: You haven’t learned about decision trees yet (basically, just imagine a flow-chart), but for this question,
all you need to know is that increasing max_depth increases the complezity of your model.

[1 Decrease the max_depth hyperparameter; the model is “overfitting”.
Wncrease the max_depth hyperparameter; the model is “underfitting”.

This is a clear case of underfitting. The key clue is that BOTH training accuracy and test accuracy are low—the
model isn't even performing well on the data it was trained on. This indicates the model is too simple to capture the
underlying patterns in the data.

The fact that you can manually achieve higher accuracies on both sets confirms that the patterns are learnable; the
model just isn't complex enough to learn them. This is the definition of underfitting: when a model is too simple to
capture the relationships in the data.

3 SP22 Final Problem 10

The DataFrame new_releases contains the following information for songs that were recently released. The
first few rows are shown below.

genre rec_label danceability speechiness first_month

0 Hip-Hop/Rap EMI 0.39 0.84 12019896
1 Pop UMG 0.91 0.65 9932385
2 Pop EMI 0.65 0.71 10923584
3 Country SME 0.45 093 8107742
4 Hip-Hop/Rap UMG 0.39 0.86 9554136

e genre: one of the following five possibilities: Hip-Hop/Rap, Pop, Country, Alternative, or International

e rec_label: the label that released the song (one of the following 4: EMI, SME, UMG, or WMG)

Nigel Doering
Training accuracy does NOT have to be higher than test accuracy, though we typically expect it to be. While models are optimized on the training data (which usually leads to higher training accuracy), it's entirely possible for test accuracy to exceed training accuracy due to random variation in how the data was split.
For example, the test set might happen to contain easier-to-classify examples, or the training set might contain more difficult or noisy examples. This is especially likely with small datasets or particular random splits. The word "must" in the question is the key—there's no guarantee that training accuracy will always be higher, only that we generally expect it to be higher on average across many random splits.

Nigel Doering
This is a clear case of underfitting. The key clue is that BOTH training accuracy and test accuracy are low—the model isn't even performing well on the data it was trained on. This indicates the model is too simple to capture the underlying patterns in the data.
The fact that you can manually achieve higher accuracies on both sets confirms that the patterns are learnable; the model just isn't complex enough to learn them. This is the definition of underfitting: when a model is too simple to capture the relationships in the data.

Nigel Doering

Nigel Doering

Nigel Doering

Nigel Doering

e danceability: how easy the song is to dance to, according to the Spotify API (between 0 and 1)
e speechiness: what proportion of the song is made up of spoken words, according to the Spotify API

e first month: the number of total streams the song had on Spotify in the first month it was released

To start, we conduct a train-test split, splitting new_releases into X_train, X_test, y_train, and y_test.
We first fit a linear model to the training data that only uses danceability, and call this model 1r_one.

Problem 3.1. True or False: If 1r_one.score(X_train, y_train) is much lower than 1r_one.score(X_test,
y-_test), it is likely that 1r_one overfit to the training data.

[1] True%alse

This is NOT overfitting. Overfitting occurs when training accuracy is HIGH but test accuracy is LOW—the model memorizes the
training data instead of learning generalizable patterns. In this scenario, training score is LOWER than test score, which is the
opposite. This could happen due to random variation in the train-test split (e.g., the test set happened to be easier), but it
doesn't indicate overfitting.

>>> X_train.shape [0]

50

>>> np.sum((y_train - lr_one.predict(X_train)) *x 2)
500000 # five hundred thousand

Problem 3.2. Given this output, what is 1r_one’s training RMSE? Give your answer as an integer.

RMSE (Root Mean Squared Error) is calculated by taking the sum of squared errors, dividing by the number of samples, and then
taking the square root. We're given that the sum of squared errors is 500,000 and there are 50 training samples. So we calculate:
500,000 divided by 50 equals 10,000. The square root of 10,000 is 100. Therefore, the training RMSE is 100.

Now, suppose we fit one more linear model (with an intercept term) to the training data:

e Model 2 (1rno_drop): Uses danceability and speechiness as-is, and one-hot encodes genre and
rec_label, using OneHotEncoder (). (Note the lack of the drop_first=True keyword.)

Suppose we are given the following coefficients in Model 2:
e The coefficient on genre_Pop is 2000.
e The coefficient on genre_Country is 1000.
e The coefficient on danceability is 10 = 1,000, 000

Problem 3.3. Daisy and Billy are two artists signed to the same rec_label who each just released a new
song with the same speechiness. Daisy is a Pop artist while Billy is a Country artist.

Model 2 predicted that Daisy’s song and Billy’s song will have the same first month streams. What is
the absolute difference between Daisy’s song’s danceability and Billy’s song’s danceability? Give your

Nigel Doering

Nigel Doering

Nigel Doering
This is NOT overfitting. Overfitting occurs when training accuracy is HIGH but test accuracy is LOW—the model memorizes the training data instead of learning generalizable patterns. In this scenario, training score is LOWER than test score, which is the opposite. This could happen due to random variation in the train-test split (e.g., the test set happened to be easier), but it doesn't indicate overfitting.

Nigel Doering
RMSE (Root Mean Squared Error) is calculated by taking the sum of squared errors, dividing by the number of samples, and then taking the square root. We're given that the sum of squared errors is 500,000 and there are 50 training samples. So we calculate: 500,000 divided by 50 equals 10,000. The square root of 10,000 is 100. Therefore, the training RMSE is 100.

answer as a simplified fraction.

Model 4 is made up of 11 features, i.e. 11 columns.

¢ 4 of the columns correspond to the different values of " rec_label". Since Daisy and Billy have the same "rec_label", their values in these four columns are all the same.

One of the columns corresponds to "speechiness". Since Daisy's song and Billy’s song have the same "speechiness", their values in this column are the same.

« 5 of the columns correspond to the different values of "“genre". Daisy is a "Pop" artist, so she has a 1in the "genre_Pop" column and a 0 in the other four "genre_" columns, and similarly Billy
has a1in the "genre_Country" column and Os in the others.

One of the columns corresponds to "“danceability", and Daisy and Billy have different quantitative values in this column.
Let d; and d.

The key is in recognizing that all features in Daisy’s prediction and Billy’s prediction are the same, other than the coefficients on "genre_Pop", "genre_Country", and "danceability". Let's let d; be
Daisy's song's "danceability", and let dg be Billy’s song’s "danceability". Then:

2000 + 10° - d; = 1000 + 10° - d,
1000 = 10%(dy — dy)
1

1000 ~ %%
1

Thus, the absolute difference between their songs’ "danceability"s is 1000

